如圖所示,在△ABC中,AB=AC,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E、F,則下列四個(gè)結(jié)論中,①AB上一點(diǎn)與AC上一點(diǎn)到D的距離相等;②AD上任意一點(diǎn)到AB、AC的距離相等;③∠BDE=∠CDF;④BD=CD,AD⊥BC.其中正確的個(gè)數(shù)是(  )
分析:根據(jù)等邊對(duì)等角的性質(zhì)可得∠B=∠C,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得AD上的點(diǎn)到AB、AC兩邊的距離相等,再根據(jù)等腰三角形三線合一的性質(zhì)可得BD=CD,AD⊥BC,然后對(duì)各小題分析判斷解答即可.
解答:解:∵AB=AC,
∴∠B=∠C,
∵AD是△ABC的角平分線,DE⊥AB,DF⊥AC,
∴AB上一點(diǎn)與AC上一點(diǎn)到D的距離相等錯(cuò)誤;AD上任意一點(diǎn)到AB、AC的距離相等正確,故①錯(cuò)誤,②正確;
又∵∠BDE=90°-∠B,∠CDF=90°-∠C,
∴BDE=∠CDF,故③正確;
根據(jù)等腰三角形三線合一的性質(zhì),BD=CD,AD⊥BC,故④正確,
綜上所述,正確的結(jié)論有②③④共3個(gè).
故選C.
點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì),角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),直角三角形兩銳角互余的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點(diǎn)F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點(diǎn),E是線段BC延長線上一點(diǎn),過點(diǎn)A作AF∥BC交ED的延長線于點(diǎn)F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點(diǎn)在BC上從B點(diǎn)向C點(diǎn)運(yùn)動(dòng)(不包括點(diǎn)C),點(diǎn)P的運(yùn)動(dòng)速度為2cm∕s;Q點(diǎn)在AC上從C點(diǎn)向點(diǎn)A運(yùn)動(dòng)(不包括點(diǎn)A),運(yùn)動(dòng)速度為5cm∕s,若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動(dòng),請(qǐng)解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm?
(2)經(jīng)過多長時(shí)間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊(cè)答案