【題目】已知二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過(guò)點(diǎn)M(﹣1,2)和點(diǎn)N(1,﹣2),交x軸于A,B兩點(diǎn),交y軸于C.則:
①b=﹣2;
②該二次函數(shù)圖象與y軸交于負(fù)半軸;
③存在這樣一個(gè)a,使得M、A、C三點(diǎn)在同一條直線上;
④若a=1,則OAOB=OC2 .
以上說(shuō)法正確的有( 。
A. ①②③④ B. ②③④ C. ①②④ D. ①②③
【答案】C
【解析】①∵二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過(guò)點(diǎn)M(1,2)和點(diǎn)N(1,2),
∴,
解得b=2.故該選項(xiàng)正確;
②由①可得b=2,a+c=0,即c=a<0,
所以二次函數(shù)圖象與y軸交于負(fù)半軸.
故該選項(xiàng)正確;
③根據(jù)拋物線圖象的特點(diǎn),M、A.C三點(diǎn)不可能在同一條直線上.故該選項(xiàng)錯(cuò)誤;
④當(dāng)a=1時(shí),c=1,∴該拋物線的解析式為y=x22x1
當(dāng)y=0時(shí),0=x22x+c,利用根與系數(shù)的關(guān)系可得x1x2=c,
即OAOB=|c|,
當(dāng)x=0時(shí),y=c,即OC=|c|=1=OC2
∴若a=1,則OAOB=OC2,
故該選項(xiàng)正確.
總上所述①②④正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=2a,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則 PA+PB的最小值為_____.(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】說(shuō)明:在解答“結(jié)論應(yīng)用”時(shí),從(A),(B)兩題中仸選一題做答.
問題探究
啟知學(xué)習(xí)小組在課外學(xué)習(xí)時(shí),發(fā)現(xiàn)了這樣一個(gè)問題:如圖(1),在四邊形ABCD中,連接AC,BD,如果△ABC與△BCD的面積相等,那么AD∥BC.在小組交流時(shí),他們?cè)趫D(1)中添加了如圖所示的輔助線,AE⊥BC于點(diǎn)E,DF⊥BC于點(diǎn)F.請(qǐng)你完成他們的證明過(guò)程.
結(jié)論應(yīng)用
在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b)兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,過(guò)點(diǎn)B作BD⊥y軸于點(diǎn)D.
(A)(1)求反比例函數(shù)的表達(dá)式;
(2)如圖(2),已知b=1,AC,BD相交于點(diǎn)E,求證:CD∥AB.
(B)(1)求反比例函數(shù)的表達(dá)式;
(2)如圖(3),若點(diǎn)B在第三象限,判斷并證明CD與AB的位置關(guān)系.
我選擇:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=的圖象如圖所示,則以下結(jié)論:①m<0;②在每個(gè)分支上y隨x的增大而增大;③若點(diǎn)A(-1,a),點(diǎn)B(2,b)在圖象上,則a <b;④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(-x,y)也在圖象上.其中正確的個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【探究證明】
(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問題,請(qǐng)你給出證明.
如圖①,在矩形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F,GH分別交AD,BC于點(diǎn)G,H.求證: ;
【結(jié)論應(yīng)用】
(2)如圖②,在滿足(1)的條件下,又AM⊥BN,點(diǎn)M,N分別在邊BC,CD上,若,則的值為 ;
【聯(lián)系拓展】
(3)如圖③,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點(diǎn)M,N分別在邊BC,AB上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,數(shù)軸上三個(gè)點(diǎn)A、O、P,點(diǎn)O是原點(diǎn),固定不動(dòng),點(diǎn)A和B可以移動(dòng),點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為.
(1)若A、B移動(dòng)到如圖所示位置,計(jì)算的值.
(2)在(1)的情況下,B點(diǎn)不動(dòng),點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng),寫出A點(diǎn)對(duì)應(yīng)的數(shù),并計(jì)算.
(3)在(1)的情況下,點(diǎn)A不動(dòng),點(diǎn)B向右移動(dòng)15.3個(gè)單位長(zhǎng),此時(shí)比大多少?請(qǐng)列式計(jì)算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是2,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別在邊AD、AB上,且OE⊥OF,則四邊形AFOE的面積是( 。
A.4B.2C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過(guò)M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PM+PN最。咳舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖象如圖所示,拋物線的對(duì)稱軸為直線x=﹣1,P1(x1,y1),P2(x2,y2)是拋物線上的點(diǎn),P3(x3,y3)是直線l上的點(diǎn),且x3<﹣1<x1<x2,則y1,y2,y3的大小關(guān)系是( 。
A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com