(2006•江西)如圖,AB是⊙O的直徑,BC是弦,OD⊥BC于E,交于D.
(1)請(qǐng)寫(xiě)出四個(gè)不同類(lèi)型的正確結(jié)論;
(2)連接CD,設(shè)∠CDB=α,∠ABC=β,試找出α與β之間的一種關(guān)系式,并予以證明.

【答案】分析:(1)AB是⊙O的直徑,BC是弦,OD⊥BC于E,本題滿足垂徑定理.
(2)根據(jù)四邊形ACDB為圓內(nèi)接四邊形,可以得到α-β=90°,再根據(jù)∠CDO=∠ODB=∠CDB得到α>2β.
解答:解:(1)不同類(lèi)型的正確結(jié)論有:
①BE=CE;
②BD=CD;
③∠BED=90°;
④∠BOD=∠A;
⑤AC∥OD;
⑥AC⊥BC;
⑦OE2+BE2=OB2
⑧S△ABC=BC•OE;
⑨△BOD是等腰三角形;
⑩△BOE∽△BAC;等等.
(說(shuō)明:1.每寫(xiě)對(duì)一條給(1分),但最多只給(4分);
(結(jié)論與輔助線有關(guān)且正確的,也相應(yīng)給分).

(2)α與β的關(guān)系式主要有如下兩種形式,請(qǐng)參照評(píng)分:
①答:α與β之間的關(guān)系式為:α-β=90°(5分)
證明:∵AB為圓O的直徑
∴∠A+∠ABC=90°①(6分)
又∵四邊形ACDB為圓內(nèi)接四邊形
∴∠A+∠CDB=180°②(7分)
∴②-①得:∠CDB-∠ABC=90°
即α-β=90°(8分)
(說(shuō)明:關(guān)系式寫(xiě)成α=90°+β或β=α-90°的均參照給分.)
②答:α與β之間的關(guān)系式為:α>2β(5分)
證明:∵OD=OB
∴∠ODB=∠OBD
又∵∠OBD=∠ABC+∠CBD
∴∠ODB>∠ABC(6分)
∵OD⊥BC,
∴CD=BD
∴∠CDO=∠ODB=∠CDB(7分)
∠CDB>∠ABC
即α>2β.(8分)
(說(shuō)明:若得出α與β的關(guān)系式為α>β,且證明正確的也給滿分.)
點(diǎn)評(píng):本題考查了圓的一些基本性質(zhì),且有一定的開(kāi)放性,第(1)小題只需根據(jù)已知的結(jié)論進(jìn)行簡(jiǎn)單的推理即可得出不少不同類(lèi)型的結(jié)論;第(2)題還考查了學(xué)生的方程思想,運(yùn)用代數(shù)知識(shí)解幾何問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)模擬卷(12)(解析版) 題型:解答題

(2006•江西)如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(3,0),OA=2,∠AOB=60°.
(1)求點(diǎn)A的坐標(biāo);
(2)若直線AB交y軸于點(diǎn)C,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年陜西省寶雞市金臺(tái)區(qū)中考數(shù)學(xué)命題比賽模擬題(解析版) 題型:解答題

(2006•江西)如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(3,0),OA=2,∠AOB=60°.
(1)求點(diǎn)A的坐標(biāo);
(2)若直線AB交y軸于點(diǎn)C,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•江西)如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(3,0),OA=2,∠AOB=60°.
(1)求點(diǎn)A的坐標(biāo);
(2)若直線AB交y軸于點(diǎn)C,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江西省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•江西)如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(3,0),OA=2,∠AOB=60°.
(1)求點(diǎn)A的坐標(biāo);
(2)若直線AB交y軸于點(diǎn)C,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•江西)如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(3,0),OA=2,∠AOB=60°.
(1)求點(diǎn)A的坐標(biāo);
(2)若直線AB交y軸于點(diǎn)C,求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案