如圖8所示,已知有一圓形橋拱,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半徑是________cm.

10 解:設(shè)O為拱形所在圓的圓心,作半徑OC⊥AB,垂足為D, 連結(jié)OA,

設(shè)拱形所在圓的半徑為 cm,則OA=x,OD=x-4,AD=AB=×16=8,

在Rt△OAD中,由勾股定理得OA2=AD2+OD2,∴x2=82+(x-4)2,解得x=10(cm).

      點撥:此題是垂徑定理及勾股定理的綜合應(yīng)用,應(yīng)明確這種作輔助線的方法及解題思路.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) (下冊) (配華東師大版新課標(biāo)) 華東師大版新課標(biāo) 題型:044

如圖所示,已知△ABC是等腰直角三角形,△ADB是等邊三角形,點C在△ABD的內(nèi)部,DE⊥AC交直線AC于點E.求證DE=CE.想一想:若C點在△ABD外部,如圖(2)所示,同樣是否有DE=CE?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標(biāo)系中,求E點的坐標(biāo)及AE的長。

(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?

(3)當(dāng)t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標(biāo)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。
(1)在圖10所示的直角坐標(biāo)系中,求E點的坐標(biāo)及AE的長。
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?
(3)當(dāng)t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州六盤水卷)數(shù)學(xué) 題型:解答題

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標(biāo)系中,求E點的坐標(biāo)及AE的長。

(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?

(3)當(dāng)t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標(biāo)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖10所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點C與原點O重合,點Ax軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D,AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標(biāo)系中,求E點的坐標(biāo)及AE的長。

(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PMDEAEM點,過點MMNADDEN點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?

(3)當(dāng)t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標(biāo)。

         圖10

查看答案和解析>>

同步練習(xí)冊答案