【題目】近期豬肉價格不斷走高,引起了民眾與政府的高度關注.當市場豬肉的平均價格每千克達到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
(1)從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%.某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)5月20日,豬肉價格為每千克40元.5月21日,某市決定投入儲備豬肉并規(guī)定其銷售價在每千克40元的基礎上下調a%出售.某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為每千克40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的 ,兩種豬肉銷售的總金額比5月20日提高了 a%,求a的值.
【答案】
(1)
解:設今年年初豬肉價格為每千克x元;
根據題意得:2.5×(1+60%)x≥100,
解得:x≥25.
答:今年年初豬肉的最低價格為每千克25元
(2)
解:設5月20日兩種豬肉總銷量為1;
根據題意得:40(1﹣a%)× (1+a%)+40× (1+a%)=40(1+ a%),
令a%=y,原方程化為:40(1﹣y)× (1+y)+40× (1+y)=40(1+ y),
整理得:5y2﹣y=0,
解得:y=0.2,或y=0(舍去),
則a%=0.2,
∴a=20;
答:a的值為20
【解析】(1)設今年年初豬肉價格為每千克x元;根據題意列出一元一次不等式,解不等式即可;(2)設5月20日兩種豬肉總銷量為1;根據題意列出方程,解方程即可.本題考查了一元一次不等式的應用、一元二次方程的應用;根據題意列出不等式和方程是解決問題的關鍵.
科目:初中數學 來源: 題型:
【題目】某學校為了解七年級男生體質健康情況,隨機抽取若干名男生進行測試,測試結果分為優(yōu)秀、良好、合格、不合格四個等級,統計整理數據并繪制圖1、圖2兩幅不完整的統計圖,請根據圖中信息回答下列問題:
(1)本次接收隨機抽樣調查的男生人數為 人,扇形統計圖中“良好”所對應的圓心角的度數為 。
(2)補全條形統計圖中“優(yōu)秀”的空缺部分。
(3)若該校七年級共有男生480人,請估計全年級男生體質健康狀況達到“良好”的人數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.
(1)求證:AC=CD;
(2)若OC=,求BH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為增強學生體質,某中學在體育課中加強了學生的長跑訓練.在一次女子800米耐力測試中,小靜和小茜在校園內200米的環(huán)形跑道上同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數圖象如圖所示,則她們第一次相遇的時間是起跑后的第秒.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從﹣3,﹣1, ,1,3這五個數中,隨機抽取一個數,記為a,若數a使關于x的不等式組 無解,且使關于x的分式方程 ﹣ =﹣1有整數解,那么這5個數中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,任意一個正整數n都可以進行這樣的分解:n=p×q(p,q是正整數,且p≤q),在n的所有這種分解中,如果p,q兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)= .
(1)如果一個正整數a是另外一個正整數b的平方,我們稱正整數a是完全平方數.求證:對任意一個完全平方數m,總有F(m)=1;
(2)如果一個兩位正整數t,t=10x+y(1≤x≤y≤9,x,y為自然數),交換其個位上的數與十位上的數得到的新數減去原來的兩位正整數所得的差為18,那么我們稱這個數t為“吉祥數”,求所有“吉祥數”中F(t)的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,過點B作BE⊥AD,BF⊥CD,垂足分別為點E,F,延長BD至G,使得DG=BD,連結EG,FG,若AE=DE,則 = .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com