19.如圖,在昆明市軌道交通的修建中,規(guī)劃在A、B兩地修建一段地鐵,點(diǎn)B在點(diǎn)A的正東方向,由于A、B之間建筑物較多,無法直接測(cè)量,現(xiàn)測(cè)得古樹C在點(diǎn)A的北偏東45°方向上,在點(diǎn)B的北偏西60°方向上,BC=800m,請(qǐng)你求出這段地鐵AB的長度.(結(jié)果精確到1m,參考數(shù)據(jù):$\sqrt{2}≈1.414$,$\sqrt{3}$≈1.732)

分析 作CD⊥AB于D,根據(jù)余弦、正切的定義分別求出BD、AD的長,計(jì)算即可.

解答 解:作CD⊥AB于D,
由題意得,∠CBD=30°,
∴BD=BC•cos∠CBD=$\frac{7\sqrt{3}}{2}$m,CD=$\frac{7}{2}$m,
∠CAD=45°,
∴AD=CD=$\frac{7}{2}$m,
∴AB=AD+BD=$\frac{7}{2}$+$\frac{7\sqrt{3}}{2}$≈10m,
答:地鐵AB的長度約為10m.

點(diǎn)評(píng) 本題考查的是解直角三角形的應(yīng)用-方向角問題,正確標(biāo)注方向角、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.下列運(yùn)算錯(cuò)誤的是( 。
A.$\sqrt{18}$=3$\sqrt{2}$B.3$\sqrt{2}$×2$\sqrt{3}$=6$\sqrt{6}$C.($\sqrt{5}$+1)2=6D.($\sqrt{7}$+2)($\sqrt{7}$-2)=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)的偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”.如果4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘?cái)?shù)”.
(1)28和2020這兩個(gè)數(shù)是“神秘?cái)?shù)”嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2k和2k+2(其中k取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的“神秘?cái)?shù)”是4的倍數(shù)嗎?為什么?
(3)兩個(gè)連續(xù)的奇數(shù)的平方差(取正整數(shù))是“神秘?cái)?shù)”嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.先化簡,再求值:($\frac{1}{x-y}$-$\frac{1}{x+y}$)÷$\frac{2y}{{x}^{2}-2xy+{y}^{2}}$,x=$\sqrt{6}$+1,y=$\sqrt{6}$-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知b>a>0,$\frac{1}{a}$+$\frac{1}$=$\frac{7}{a+b}$.
(1)求$\frac{a}$+$\frac{a}$的值;
(2)求$\frac{a}$-$\frac{a}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.計(jì)算:(-x-y)2•(x+y)3=(x+y)5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處.
(1)求重疊部分△AFC的面積.
(2)點(diǎn)P為線段AC上任意一點(diǎn),PM⊥AE于點(diǎn)M,PN⊥EC于N,試求PM+PN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.如圖,若⊙O的半徑為10,AB是⊙O的一條弦,點(diǎn)C是⊙O上的一動(dòng)點(diǎn),且∠ACB=45°,點(diǎn)D、E分別是AC、BC的中點(diǎn),直線DE與⊙O交于F、G兩點(diǎn).當(dāng)DF+EG取得最大值時(shí),弦BC的長為20.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的“三階等腰線”.
例如:如圖①,線段BD、CE把一個(gè)頂角為36°的等腰△ABC分成了3個(gè)等腰三角形,則線段BD、CE就是等腰△ABC的“三階等腰線”.

(1)圖②是一個(gè)頂角為45°的等腰三角形,在圖中畫出“三階等腰線”,并標(biāo)出每個(gè)等腰三角形頂角的度數(shù);
(2)如圖③,在BC邊上取一點(diǎn)D,令A(yù)D=CD可以分割出第一個(gè)等腰△ACD,接著僅需要考慮如何將△ABD分成2個(gè)等腰三角形,即可畫出所需要的“三階等腰線”,類比該方法,在圖④中畫出△ABC的“三階等腰線”,并標(biāo)出每個(gè)等腰三角形頂角的度數(shù);
(3)在△ABC中,BC=a,AC=b,∠C=2∠B.
①作出△ABC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)
②畫出△ABC的“三階等腰線”,并做適當(dāng)?shù)臉?biāo)注.

查看答案和解析>>

同步練習(xí)冊(cè)答案