如圖,在△ABC中,AB=AC=5,以AB為直徑的⊙P交BC于H.點A,B在x軸上,點H在y軸上,B點的坐標為(1,0).
(1)求點A,H,C的坐標;
(2)過H點作AC的垂線交AC于E,交x軸于F,求證:EF是⊙P的切線;
(3)求經(jīng)過A,O兩點且頂點到x軸的距離等于4的拋物線解析式.
如圖
(1)連接AH,
∵AB是⊙P的直徑,
∴∠AHB=90°(1分)
∵∠HOB=90°,∠OHB=∠HAO,
∴△HOB△AOH
∴OH2=OA•OB,
∴OH2=4×1
∴OH=2(2分)
過C點作CM⊥y軸于M,
∵AB=AC,∠AHB=90°
∴CH=HB(3分)
∵∠CHM=∠OHB,△CHM≌△BHO
∴CM=OB,MH=OH,
∴OM=4,CM=1,(4分)
∴A(-4,0),H(0,2),C(-1,4)(寫錯一個不扣分)(5分)
(或過C點作CM⊥x軸于M,用中位線定理求得OM=1,CM=4).

(2)證法一:連接HP,
∵CH=BH,AP=PB,
∴HPAC,(6分)
∵EF⊥AC,
∴PH⊥EF,(7分)
∴EF是⊙P的切線.(8分)
證法二:
∵AB=AC,
∴∠ACH=∠ABH,
∵HP=PB,
∴∠PHB=∠PBH
∴∠PHB=∠ACH(6分)
∵∠ACH+∠EHC=90°,∠EHC=∠BHF
∴∠PHB+∠BHF=90°(7分)
∴EF是⊙P的切線.(8分)

(3)解法一:
由題意知:拋物線的頂點坐標為(-2,4)或(-2,-4),(9分)
設(shè)拋物線方程為y=a1(x+2)2+4或y=a2(x+2)2-4(10分),
分別代入x=0,y=0得:a1=-1,a2=1,(11分)
∴拋物線的解析式為y=-(x+2)2+4或y=(x+2)2-4.(12分)
解法二:(簡要過程)
設(shè)拋物線的方程為y=ax2+bx+c,代入頂點坐標(-2,4)或(-2,-4)(9分)
以及(0,0),(-4,0)得兩個三元一次方程組,(10分)
解方程組得c1=0,a1=-1,b1=-4;c2=0,a2=1,b2=4;(11分)
∴拋物線的解析式為y=x2+4x或y=-x2-4x.(12分)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對稱,并與y軸交于點M,與x軸交于點A和B.
(1)求出y=mx2+nx+p的解析式,試猜想出一般形式y(tǒng)=ax2+bx+c關(guān)于y軸對稱的二次函數(shù)解析式(不要求證明);
(2)若AB中點是C,求sin∠CMB;
(3)如果一次函數(shù)y=kx+b過點M,且于y=mx2+nx+p相交于另一點N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知OB=2,點A和點B關(guān)于N(0,-2)成中心對稱,拋物線y=ax2+bx+c經(jīng)過點A、O、B三點.
(1)求拋物線的函數(shù)表達式;
(2)若點P是x軸上的一動點,從點O出發(fā)沿射線OB方向運動,圓P半徑為
3
2
4
,速度為每秒1個單位,試求幾秒后圓P與直線AB相切;
(3)在此拋物線上,是否存在點P,使得以點P與點O、A、B為頂點的四邊形是梯形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與直線y=kx+b交于A(3,0)、C(0,3)兩點,拋物線的頂點坐標為Q(2,-1).點P是該拋物線上一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PDy軸,交直線AC于點D.
(1)求該拋物線的解析式;
(2)設(shè)P點的橫坐標為t,PD的長度為l,求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點P的坐標.
(3)在問題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如果拋物線y=-x2+2(m-1)x+m+1與x軸都交于A,B兩點,且A點在x軸的正半軸上,B點在x軸的負半軸上,OA的長是a,OB的長是b.
(1)求m的取值范圍;
(2)若a:b=3:1,求m的值,并寫出此時拋物線的解析式;
(3)設(shè)(2)中的拋物線與y軸交于點C,拋物線的頂點是M,問:拋物線上是否存在點P,使△PAB的面積等于△BCM面積的8倍?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店將進價為100元的某商品按120元的價格出售,可賣出300件;若商店在120元的基礎(chǔ)上每漲價1元,就要少賣10件,而每降價1元,就可多賣30件.
(1)求所獲利潤y(元)與售價x(元)之間的函數(shù)關(guān)系式;
(2)為了獲取最大利潤,商店應(yīng)將每件商品的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在四邊形ABCD中,AB=1,E、F、G、H分別時AB、BC、CD、DA上的點,且AE=BF=CG=DH.設(shè)四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖①,當四邊形ABCD為正方形時,
①求S關(guān)于x的函數(shù)解析式,并求S的最小值S0
②在圖②中畫出①中函數(shù)的草圖,并估計S=0.6時x的近似值(精確到0.01);
(2)如圖③,當四邊形ABCD為菱形,且∠A=30°時,四邊形EFGH的面積是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知A1,A2,A3,…,A2009是x軸上的點,且OA1=A1A2=A2A3=…=A2008A2009=1,分別過點A1,A2,A3,…,A2009作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點P1,P2,P3,…,P2009,若記△OA1P1的面積為S1,過點P1作P1B1⊥A2P2于點B1,記△P1B1P2的面積為S2,過點P2作P2B2⊥A3P3于點B2,記△P2B2P3的面積為S3,…,依次進行下去,最后記△P2008B2008P2009的面積為S2009,則S2009-S2008=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,長方形雞場的一邊靠墻(墻長18m),墻對面有一個2m寬的門,另三邊用竹籬笆圍成,籬笆總長33m,
(1)若雞場面積為150m2,求雞場的長和寬各為多少m?
(2)求圍成的雞場的最大面積.

查看答案和解析>>

同步練習冊答案