【題目】如圖①已知正方形ABCD的邊BC、CD上分別有E、F兩點(diǎn),且∠EAF=45°,現(xiàn)將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ABH處.
(1)線段EF、BE、DF有何數(shù)量關(guān)系?并說(shuō)明理由;
模仿(1)中的方法解決(2)、(3)兩個(gè)問(wèn)題:
(2)如圖②,若將E、F移至BD上,其余條件不變,且BE=,DF=3,求EF的長(zhǎng);
(3)如圖③,圖形變成矩形ABCD,∠EAF=45°,BE=3,AB=6,AD=10,求DF和EF的長(zhǎng).
【答案】(1) EF=BE+DF;(2) ;(3) ,.
【解析】試題分析:(1)由旋轉(zhuǎn)的性質(zhì)得:△ADF≌△ABH,從而可由SAS證△HAE≌△FAE,得到EF=HE,從而得到結(jié)論;
(2)把△ABE繞點(diǎn)A旋轉(zhuǎn)90°到△ADG,連接GF.同(1)可得:△AGD≌△AEB,△AEF≌△AGF,得到BE=GD,∠GDA=∠EBA=45°,EF=GF,由∠FDA=45°,得到∠FDG=90°.在Rt△GDF中,由勾股定理即可得到結(jié)論;
(3)把△ADF繞A旋轉(zhuǎn)90°到△AQH,連接EH,過(guò)E作EP⊥HQ 于P.同理得△ADF≌△AQH,△HAE≌△FAE,EF=HE.設(shè)DF=x.在Rt△HPE與Rt△ECF中,由勾股定理即可得出結(jié)論.
試題解析:解:(1)EF=BE+DF.理由如下:
由旋轉(zhuǎn)的性質(zhì)得:△ADF≌△ABH,∴AH=AF,DF=HB,∠HAB=∠DAF.∵∠DAF+∠FAB=90°,∴∠FAH=90°.∵∠EAF=45°,∴∠EAH=45°,∴∠EAF=∠EAH.在△EAF和△EAH中,∵AF=AH,∠EAF=∠HAE,AE=AE,∴△HAE≌△FAE(SAS),∴EF=HE.∵HE=HB+BE=DF+BE,∴EF=BE+DF;
(2)把△ABE繞點(diǎn)A旋轉(zhuǎn)90°到△ADG,連接GF.同(1)可得:△AGD≌△AEB,△AEF≌△AGF,∴BE=GD,∠GDA=∠EBA=45°,EF=GF.∵∠FDA=45°,∴∠FDG=90°,∴EF=FG====;
(3)把△ADF繞A旋轉(zhuǎn)90°到△AQH,連接EH,過(guò)E作EP⊥HQ 于P.
同理得△ADF≌△AQH,△HAE≌△FAE(SAS),∴EF=HE.
設(shè)DF=x.在Rt△HPE與Rt△ECF中,由勾股定理得:
,
∴ ;
解得: ,∴DF=,EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)算一算下面兩組算式:(3×5)2與32×52;[(-2)×3]2與(-2)2×32,每組兩個(gè)算式的結(jié)果是否相同?
(2)想一想,(a×b)3等于什么?
(3)猜一猜,當(dāng)n為正整數(shù)時(shí),(a×b)n等于什么?你能利用乘方的意義說(shuō)明理由嗎?
(4)利用上述結(jié)論,計(jì)算:(-8)2018×(0.125)2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化妝品銷售公司每月收益y萬(wàn)元與銷售量x萬(wàn)件的函數(shù)關(guān)系如圖所示.(收益=銷售利潤(rùn)﹣固定開(kāi)支)
(1)寫出圖中點(diǎn)A與點(diǎn)B的實(shí)際意義;
(2)求y與x的函數(shù)表達(dá)式;
(3)已知目前公司每月略有虧損,為了讓公司扭虧為盈,經(jīng)理決定將每件產(chǎn)品的銷售單價(jià)提高2元,請(qǐng)?jiān)趫D中畫出提價(jià)后y與x函數(shù)關(guān)系的圖象,并直接寫出該函數(shù)的表達(dá)式.(要標(biāo)出確定函數(shù)圖象時(shí)所描的點(diǎn)的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)有理數(shù)的乘法后,老師給同學(xué)們這樣一道題目:計(jì)算:49×(﹣5),看誰(shuí)算的又快又對(duì),有兩位同學(xué)的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對(duì)于以上兩種解法,你認(rèn)為誰(shuí)的解法較好?
(2)上面的解法對(duì)你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請(qǐng)把它寫出來(lái);
(3)用你認(rèn)為最合適的方法計(jì)算:19×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加省比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)绫恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根據(jù)表格中的數(shù)據(jù),分別計(jì)算甲、乙的平均成績(jī);
(2)已知甲六次成績(jī)的方差S甲2= ,試計(jì)算乙六次測(cè)試成績(jī)的方差;根據(jù)(1)、(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加省比賽更合適,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(-3)-(-15)÷(-3); (2)(-42)÷(-7)-(-6)×4;
(3)-14-×[2-(-3)2]; (4)-13-(1-0.5)2××(2-22);
(5)10+8×(-)2-2÷; (6)(-1)10-(-3)×|-|÷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中:A(1,1),B(-1,1),C(-1,-2),D(1,-2),現(xiàn)把一條長(zhǎng)為2 018個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A→B→C→D→A→…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)要求,解答下列問(wèn)題:
(1)解答下列問(wèn)題 ①方程x2﹣2x+1=0的解為;
②方程x2﹣3x+2=0的解為;
③方程x2﹣4x+3=0的解為;
…
(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想: ①方程x2﹣9x+8=0的解為;
②關(guān)于x的方程的解為x1=1,x2=n.
(3)請(qǐng)用配方法解方程x2﹣9x+8=0,以驗(yàn)證猜想結(jié)論的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E是正方形ABCD的邊CD外的一點(diǎn),△DCE為等邊三角形,BE交對(duì)角線AC于F .
(1)求∠AFD的度數(shù);
(2)求證:AF = EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com