(2012•莆田)如圖,點(diǎn)C在以AB為直徑的半圓O上,延長(zhǎng)BC到點(diǎn)D,使得CD=BC,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F,點(diǎn)G為DF的中點(diǎn),連接CG、OF、FB.
(1)求證:CG是⊙O的切線;
(2)若△AFB的面積是△DCG的面積的2倍,求證:OF∥BC.
分析:(1)連接OC.欲證CG是⊙O的切線,只需證明∠CGO=90°,即CG⊥OC;
(2)根據(jù)直角三角形ABC、直角三角形DCF的面積公式,以及直角三角形斜邊的中線等于斜邊的一半求得AC=2AF;然后根據(jù)三角形中位線的判定與定理證得該結(jié)論.
解答:證明:(1)如圖,連接OC.
在△ABC中,∵AB是⊙O的直徑,
∴∠ACB=90°(直徑所對(duì)的圓周角是直角);
又∵OA=OC,
∴∠A=∠ACO(等邊對(duì)等角);
在Rt△DCF中,∵點(diǎn)G為DF的中點(diǎn),∴CG=GF(直角三角形斜邊上的中線是斜邊的一半),
∴∠GCF=∠CFG(等邊對(duì)等角);
∵DE⊥AB(已知),∠CFG=∠AFE(對(duì)頂角相等);
∴在Rt△AEF中,∠A+∠AFE=90°;
∴∠ACO+∠GCF=90°,即∠GCO=90°,
∴CG⊥OC,
∴CG是⊙O的切線;

(2)∵AB是⊙O的直徑,
∴∠ACB=90°(直徑所對(duì)的圓周角是直角),即AC⊥BD;
又∵CD=BC,點(diǎn)G為DF的中點(diǎn),
∴S△AFB=S△ABC-S△BCF=
1
2
(AC•BC-CF•BC),S△DCG=
1
2
S△FCD=
1
2
×
1
2
DC•CF=
1
4
BC•CF;
∵△AFB的面積是△DCG的面積的2倍,
1
2
(AC•BC-CF•BC)=2×
1
4
BC•CF,
∴AC=2CF,即點(diǎn)F是AC的中點(diǎn);
∵O點(diǎn)是AB的中點(diǎn),
∴OF是△ABC的中位線,
∴OF∥BC.
點(diǎn)評(píng):本題考查了切線的判定、圓周角定理.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田)如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長(zhǎng)為2012個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A-B-C-D-A-…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田)如圖,△A′B′C′是由△ABC沿射線AC方向平移2cm得到,若AC=3cm,則A′C=
1
1
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田)如圖,某種新型導(dǎo)彈從地面發(fā)射點(diǎn)L處發(fā)射,在初始豎直加速飛行階段,導(dǎo)彈上升的高度y(km)與飛行時(shí)間x(s)之間的關(guān)系式為y=
1
18
x2+
1
6
x
 (0≤x≤10).發(fā)射3s后,導(dǎo)彈到達(dá)A點(diǎn),此時(shí)位于與L同一水平面的R處雷達(dá)站測(cè)得AR的距離是2km,再過(guò)3s后,導(dǎo)彈到達(dá)B點(diǎn).
(1)求發(fā)射點(diǎn)L與雷達(dá)站R之間的距離;
(2)當(dāng)導(dǎo)彈到達(dá)B點(diǎn)時(shí),求雷達(dá)站測(cè)得的仰角(即∠BRL)的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•莆田)如圖,在平面直角坐標(biāo)系中,矩形OABC四個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(0,3),B(6,3),C(6,0),拋物線y=ax2+bx+c(a≠0)過(guò)點(diǎn)A.

(1)求c的值;
(2)若a=-1,且拋物線與矩形有且只有三個(gè)交點(diǎn)A、D、E,求△ADE的面積S的最大值;
(3)若拋物線與矩形有且只有三個(gè)交點(diǎn)A、M、N,線段MN的垂直平分線l過(guò)點(diǎn)0,交線段BC于點(diǎn)F.當(dāng)BF=1時(shí),求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案