精英家教網 > 初中數學 > 題目詳情
(2005•吉林)如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內,在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據這些條件,請你求出該大門的高h.

【答案】分析:解決拋物線的問題,需要合理地建立平面直角坐標系,用二次函數的性質解答,建立直角坐標系的方法有多種,大體是以拋物線對稱軸為y軸(包括頂點在原點),拋物線經過原點等等.
解答:解:解法一:如圖1,建立平面直角坐標系.
設拋物線解析式為y=ax2+bx.
由題意知B、C兩點坐標分別為B(18,0),C(17,1.7),
把B、C兩點坐標代入拋物線解析式得

解得
∴拋物線的解析式為
y=-0.1x2+1.8x
=-0.1(x2-18x+81-81)
=-0.1(x-9)2+8.1.
∴該大門的高h為8.1m.

解法二:如圖2,建立平面直角坐標系.
設拋物線解析式為y=ax2
由題意得B、C兩點坐標分別為B(9,-h),C(8,-h+1.7).
把B、C兩點坐標代入y=ax2

解得
∴y=-0.1x2
∴該大門的高h為8.1m.
說明:此題還可以以AB所在直線為x軸,AB中點為原點,建立直角坐標系,可得拋物線解析式為y=-0.1x2+8.1.
點評:建立適當的直角坐標系,根據題目所給數據求點的坐標,再求拋物線解析式,解答題目的問題.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2005•吉林)如圖①,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標系.拋物線y=ax2經過A、O、D三點,圖②和圖③是把一些這樣的小正方形及其內部拋物線部分經過拼組得到的.

(1)a的值為______;
(2)圖②中矩形EFGH的面積為______;
(3)圖③中正方形PQRS的面積為______.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2005•吉林)如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0).點C(0,5),D(1,8)在拋物線上,M為拋物線的頂點.
(1)拋物線的解析式為______;
(2)△MCB的面積為______.

查看答案和解析>>

科目:初中數學 來源:2005年吉林省中考數學試卷(課標卷)(解析版) 題型:解答題

(2005•吉林)如圖1,四邊形ABCD是邊長為5的正方形,以BC的中點O為原點,BC所在直線為x軸建立平面直角坐標系.拋物線y=ax2經過A,O,D三點,圖2和圖3是把一些這樣的小正方形及其內部的拋物線部分經過平移和對稱變換得到的.
(1)求a的值;
(2)求圖2中矩形EFGH的面積;
(3)求圖3中正方形PQRS的面積.

查看答案和解析>>

科目:初中數學 來源:2005年吉林省中考數學試卷(大綱卷)(解析版) 題型:解答題

(2005•吉林)如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0).點C(0,5),D(1,8)在拋物線上,M為拋物線的頂點.
(1)拋物線的解析式為______;
(2)△MCB的面積為______.

查看答案和解析>>

同步練習冊答案