【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E是AD的中點,如果OE=2,AD=6,那么ABCD的周長是( )

A.20
B.12
C.24
D.8

【答案】A
【解析】∵ABCD對角線相交于點O,E是AD的中點,

∴AB=CD,AD=BC=6,EO是△ABD的中位線,

∴AB=2OE=4,

ABCD的周長=2(AB+AD)=20.

所以答案是:A.

【考點精析】關于本題考查的三角形中位線定理和平行四邊形的性質,需要了解連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:-2a2a-3ab=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC,AC,AB邊的中點分別是點D,E,F(xiàn),則下列說法可能不正確的為( )

A.四邊形CDFE是矩形
B.DE=CF= AB
C.SABC=4SAEF
D.∠B=30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景

如圖1,在正方形ABCD的內(nèi)部,作DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。

類比研究

如圖2,在正ABC的內(nèi)部,作BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。

(1)ABD,BCE,CAF是否全等?如果是,請選擇其中一對進行證明;

(2)DEF是否為正三角形?請說明理由;

(3)進一步探究發(fā)現(xiàn),ABD的三邊存在一定的等量關系,設,,,請?zhí)剿?/span>,,滿足的等量關系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育課上,某班兩名同學分別進行了5次短跑訓練,要判斷哪一名同學的成績比較穩(wěn)定,通常需要比較這兩名學生成績的(
A.平均數(shù)
B.頻數(shù)分布
C.中位數(shù)
D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解本校七年級同學在雙休日參加體育鍛煉的時間,課題小組進行了問卷調(diào)查(問卷調(diào)查表如圖所示),并用調(diào)查結果繪制了圖1,圖2兩幅統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖解答以下問題:

(1)本次接受問卷調(diào)查的同學有多少人?補全條形統(tǒng)計圖.

(2)本校有七年級同學800人,估計雙休日參加體育鍛煉時間在3小時以內(nèi)(不含3小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】αβ的度數(shù)分別是2m-1977-m,且αβ都是γ的補角,那么αβ的關系是(  )

A. 不互余且不相等B. 不互余但相等

C. 互為余角但不相等D. 互為余角且相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列現(xiàn)象:①電梯的升降運動,②飛機在地面上沿直線滑行,③風車的轉動,④冷水加熱過程中氣泡的上升.其中屬于平移的是(
A.①②
B.①③
C.②③
D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題14分)如圖,已知線段AB=2,MNAB于點M,且AM=BM,P是射線MN上一動點,E,D分別是PA,PB的中點,過點A,M,D的圓與BP的另一交點C(點C在線段BD上),連結AC,DE

(1)當APB=28°時,求B和的度數(shù);

(2)求證:AC=AB。

(3)在點P的運動過程中

當MP=4時,取四邊形ACDE一邊的兩端點和線段MP上一點Q,若以這三點為頂點的三角形是直角三角形,且Q為銳角頂點,求所有滿足條件的MQ的值;

記AP與圓的另一個交點為F,將點F繞點D旋轉90°得到點G,當點G恰好落在MN上時,連結AG,CG,DG,EG,直接寫出ACG和DEG的面積之比

查看答案和解析>>

同步練習冊答案