【題目】如圖所示,在平行四邊形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分線.下列說法正確的是( )
①BE=CF ②AE是∠DAB的角平分線 ③∠DAE+∠DCF=120°.
A. ① B. ①② C. ①②③ D. 都不正確
【答案】C
【解析】試題分析:可證明四邊形AEFD為平行四邊形,可求得BC=EF,可判斷①;結(jié)合角平分線的定義和條件可證明△ABE、△CDF為等邊三角形,可判斷②③,可得出答案.
試題解析:∵四邊形ABCD為平行四邊形,
∴AD∥BC,且AD=BC,
又∵AE∥DF,
∴四邊形AEDF為平行四邊形,
∴EF=AD,
∴BC=EF,
∴BE=CF,
故①正確;
∵DC平分∠ADF,
∴∠ADC=∠FDC,
又∵AD∥EF,
∴∠ADC=∠DCF,
∴∠DCF=∠FDC,
∴DF=CF,
又∵AE=DF,
∴AE=CF=BE,
又∵∠ABE=∠AEB,
∴AB=AE,
∴△ABE和△CDF為等邊三角形,
∴∠BAE=∠B=∠DAE=∠DCF=60°,
∴AE平分∠DAB,∠DAE+∠DCF=120°,
故②③正確;
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】從2004年8月1日起,浙江省城鄉(xiāng)居民生活用電執(zhí)行新的電價政策:安裝”一戶一表”的居民
用戶,按用抄見電量(每家用戶電表所表示的用電量)實行階梯式累進加價,其中低于50千瓦時(含50
千瓦時)部分電價不調(diào)整;51—200千瓦時部分每千瓦時電價上調(diào)0.03元;超過200千瓦時部分每千
瓦時電價上調(diào)0.10元.已知調(diào)整前電價統(tǒng)一為每千瓦時0.53元.
(1)若許老師家10月份的用電量為130千瓦時,則10月份許老師家應付電費多少元?
(2)已知許老師家10月份的用電量為千瓦時,請完成下列填空:
①若千瓦時,則10月份許老師家應付電費為 元;
②若50<≤200千瓦時,則10月份許老師家應付電費為 元;
③若>200千瓦時,則10月份許老師家應付電費為 元.
(3)若10月份許老師家應付電費為96.50元,則10月份許老師家的用電量是多少千瓦時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=8.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點 ,經(jīng)過A、B的直線l以每秒1個單位的速度向下作勻速平移運動,與此同時,點P從點B出發(fā),在直線l上以每秒1個單位的速度沿直線l向右下方向作勻速運動.設(shè)它們運動的時間為t秒.
(1)用含t的代數(shù)式表示點P的坐標;
(2)過O作OC⊥AB于C,過C作CD⊥x軸于D,問:t為何值時,以P為圓心、1為半徑的圓與直線OC相切?并說明此時⊙P與直線CD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點,過點A作AD⊥BP于點D,交直線BC于點Q.
(1)如圖1,當P在線段AC上時,求證:BP=AQ;
(2)如圖2,當P在線段CA的延長線上時,(1)中的結(jié)論是否成立? (填“成立”或“不成立”)
(3)在(2)的條件下,當∠DBA= 度時,存在AQ=2BD,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一粒木質(zhì)中國象棋子“兵”,它的正面雕刻一個“兵”字,它的反面是年平的將它從一定高度下擲,落地反彈后可能是“兵”字面朝上,也可能是“兵”字面朝下由于棋子的兩面不均勻,為了估計“兵”字面朝上的概率,某實驗小組做了棋子下擲實驗,實驗數(shù)據(jù)如下表:
實驗次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“兵”字面朝上頻數(shù) | 14 | 38 | 47 | 52 | 66 | 78 | 88 | |
相應頻率 |
請將數(shù)據(jù)補充完整;
畫出“兵”字面朝上的頻率分布折線圖;
如果實驗繼續(xù)進行下去,根據(jù)上表的數(shù)據(jù),這個實驗的頻率將穩(wěn)定在它的概率附近,請你估計這個概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O為AC邊上的一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論;
(3)若AC邊上存在點O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形OAB的圓心角為90°,點C,D是弧AB的三等分點,半徑OC,OD分別與弦AB交于點E,F(xiàn),下列說法錯誤的是( )
A.AE=EF=FB
B.AC=CD=DB
C.EC=FD
D.∠DFB=75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,對角線AC、BD相交于點O,BE∥AC交DC的延長線于點E.
(1)求證:BD=BE;
(2)若DBC=30,CD=4,求四邊形ABED的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com