【題目】如圖,O為菱形ABCD對(duì)角線上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的⊙OBC相切于點(diǎn)M

1)求證:CD與⊙O相切;

2)若菱形ABCD的邊長(zhǎng)為2,∠ABC60°,求⊙O的半徑.

【答案】(1)詳見(jiàn)解析;(2)O的半徑為﹣6+4

【解析】

1)連接OM,過(guò)點(diǎn)OONCDN.只要證明OM=ON即可解決問(wèn)題;

2)設(shè)半徑為r,則OC=2-rOM=r,利用勾股定理構(gòu)建方程即可解決問(wèn)題

1)連接OM,過(guò)點(diǎn)OONCDN,

∵⊙OBC相切于點(diǎn)M,

OMBC,OM是⊙O的半徑,

AC是菱形ABCD的對(duì)角線,

AC平分∠BCD,

ONCD,OMBC

ONOMr,

CD與⊙O相切;

2)∵四邊形ABCD是菱形,

ABBC,

∵∠ABC60°,

∴△ACB是等邊三角形,

ACAB2,

設(shè)半徑為r.則OC2rOMr,

∵∠ACB60°,∠OMC90°

∴∠COM30°,MC

RtOMC中,∠OMC90°,

OM2+CM2OC2,

r2+2=(2r2,

解得r=﹣6+4或﹣64(舍棄),

∴⊙O的半徑為﹣6+4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過(guò)A作半圓的切線,與半圓相切于F點(diǎn),與DC相交于E點(diǎn),則△ADE的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠MAN30°,O為邊AN上一點(diǎn),以點(diǎn)O為圓心,2為半徑作⊙O,交AND,E兩點(diǎn),設(shè)ADx.

(1)如圖①,當(dāng)x取何值時(shí),⊙OAM相切?

(2)如圖②,當(dāng)x為何值時(shí),⊙OAM相交于B,C兩點(diǎn),且∠BOC90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是從一副撲克牌中取出的兩組牌,分別是黑桃1,2,3,4和方塊1,2,3,4,將它們背面朝上分別重新洗牌后,從兩組牌中各摸出一張,那么摸出的兩張牌的牌面數(shù)字之和等于5的概率是多少?請(qǐng)你用列舉法(列表或畫(huà)樹(shù)狀圖)加以分析說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yax2+bx3x軸于點(diǎn)A(﹣3,0)、B1,0),在y軸上有一點(diǎn)E01),連接AE

1)求二次函數(shù)的表達(dá)式;

2)若點(diǎn)D為拋物線在x軸負(fù)半軸下方的一個(gè)動(dòng)點(diǎn),求△ADE面積的最大值;

3)拋物線對(duì)稱軸上是否存在點(diǎn)P,使△AEP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鳳城商場(chǎng)經(jīng)銷一種高檔水果,售價(jià)為每千克50

1)連續(xù)兩次降價(jià)后售價(jià)為每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知這種水果的進(jìn)價(jià)為每千克40元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),若每千克漲價(jià)1元,日銷售量將減少20千克,每千克應(yīng)漲價(jià)多少元才能使每天獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為菱形ABCD對(duì)角線上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的⊙OBC相切于點(diǎn)M

1)求證:CD與⊙O相切;

2)若菱形ABCD的邊長(zhǎng)為2,∠ABC60°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為⊙O的直徑BA延長(zhǎng)線上的一點(diǎn),PC與⊙O相切,切點(diǎn)為C,點(diǎn)D是⊙O上一點(diǎn),連結(jié)PD.已知PCPDBC.下列結(jié)論:(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)POAB(4)PDB120°.其中正確的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC外切于⊙O,切點(diǎn)分別為點(diǎn)D,EF,∠A60°,BC7,⊙O的半徑為.求:(1)求BF+CE的值; 2)求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案