如圖,⊙O的直徑AB為10cm,弦AC為6cm,∠ACB的平分線(xiàn)交AB于E,交⊙O于D.求弦AD,CD的長(zhǎng).

【答案】分析:根據(jù)圓周角定理及勾股定理可得AD的長(zhǎng),過(guò)E作EF⊥AC于F,EG⊥BC于G,F(xiàn),G是垂足,則四邊形CFEG是正方形,設(shè)EF=EG=x,由三角形面積公式可求出x的值,及CE的值,根據(jù)△ADE∽△CBE,根據(jù)相似比可求出DE的長(zhǎng),進(jìn)而求出CD的長(zhǎng).
解答:解:∵AB是直徑
∴∠ACB=90°
∵AB=10cm,AC=6cm,
∴BC===8(cm)
∵CD平分∠ACB
=
∴AD=BD
∴AD=BD=AB=5(cm)
過(guò)E作EF⊥AC于F,EG⊥BC于G,F(xiàn),G是垂足,則四邊形CFEG是正方形,
設(shè)EF=EG=x,
AC•x+BC•x=AC•BC
×6•x+×8×x=×6×8
∴x=
∴CE=x=
∵∠DAB=∠DCB,
∵△ADE∽△CBE
∴DE:BE=AE:CE=AD:BC
∴DE:BE=AE:=5:8
∴AE=,BE=AB-AE=10-=
∴DE=
∴CD=CE+DE=+=7(cm).
答:弦AD,CD的長(zhǎng)依次為5cm,7cm.
點(diǎn)評(píng):本題綜合考查了圓周角定理,垂徑定理,角平分線(xiàn)的性質(zhì),及相似三角形的性質(zhì).解答此題的關(guān)鍵是作出輔助線(xiàn),構(gòu)造正方形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線(xiàn)BF與弦AD的延長(zhǎng)線(xiàn)相交于點(diǎn)F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線(xiàn)段AD、CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點(diǎn),過(guò)點(diǎn)B作BF∥CD交AD的延長(zhǎng)線(xiàn)于
點(diǎn)F.
(1)求證:BF是⊙O的切線(xiàn);
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線(xiàn)段BF、BC的長(zhǎng).(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點(diǎn),連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線(xiàn),AD=2,BC=
92

(1)求OD、OC的長(zhǎng);
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點(diǎn),CD=6cm,則直徑AB的長(zhǎng)是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案