如圖Ⅰ,分別以直角三角形ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1、S2、S3表示,則不難證明S1=S2+S3
(1)如圖Ⅱ,分別以直角三角形ABC三邊為直徑向外作三個(gè)半圓,其面積分別用S1、S2、S3表示,設(shè)BC=a,AC=b,AB=c,證明:S1=S2+S3
(2)如圖Ⅲ,分別以直角三角形ABC三邊為邊向外作三個(gè)正三角形,其面積分別用S1、S2、S3表示,請(qǐng)你確定S1、S2、S3之間的關(guān)系.(不必證明)
(3)若分別以直角三角形ABC三邊為邊向外作三個(gè)正多邊形,其面積分別用S1、S2、S3表示,請(qǐng)你猜想S1、S2、S3之間的關(guān)系?.(不必證明)
分析:(1)分別用AB、BC和AC表示出 S1、S2、S3,然后根據(jù)AB2=AC2+BC2即可得出S1、S2、S3的關(guān)系;
(2)分別用AB、BC和AC表示出 S1、S2、S3,然后根據(jù)AB2=AC2+BC2即可得出S1、S2、S3的關(guān)系;
(3)分別用AB、BC和AC表示出 S1、S2、S3,然后根據(jù)AB2=AC2+BC2即可得出S1、S2、S3的關(guān)系.
解答:解:(1)∵S3=
π
8
AC2,S2=
π
8
BC2,S1=
π
8
AB2,
π
8
AC2+
π
8
BC2=
π
8
AB2
π
8
b2+
π
8
a2=
π
8
c2,
在Rt△ABC中,
∵b2+a2=c2,
∴S2+S3=S1

(2)S1=S2+S3
理由:由題意可得出:S1=
3
4
AB2,S2=
3
4
BC2,S3=
3
4
AC2,
∴則S1=
3
4
c2,S2=
3
4
a2,S3=
3
4
b2
∴S2+S3=
3
4
(a2+b2)=
3
4
c2=S1
即S1=S2+S3

(3)由(1)(2)可得出:S1=S2+S3
點(diǎn)評(píng):此題主要考查了三角形、正方形、圓的面積計(jì)算以及勾股定理的應(yīng)用,解題關(guān)鍵是熟練掌握勾股定理的公式,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲,分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA 所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線y=
14
x2+bx+c
經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.
(1)求B點(diǎn)坐標(biāo);
(2)求證:ME是⊙P的切線;
(3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),
①求△ACQ周長的最小值;
②若FQ=t,S△ACQ=S,直接寫出S與t之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠ABC=90゜,AB=BC,點(diǎn)A、B分別是x軸和y軸上的一動(dòng)點(diǎn).
(1)如圖1,若點(diǎn)C的橫坐標(biāo)為-4,求點(diǎn)B的坐標(biāo);
(2)如圖2,BC交x軸于D,AD平分∠BAC,若點(diǎn)C的縱坐標(biāo)為3,A(5,0),求點(diǎn)D的坐標(biāo).
(3)如圖3,分別以O(shè)B、AB為直角邊在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y軸于M,求 S△BEM:S△ABO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所對(duì)的邊分別記作a、b、c.
(1)如圖1,分別以△ABC的三條邊為邊長向外作正方形,其正方形的面積由小到大分別記作S1、S2、S3,則有S1+S2=S3
(2)如圖2,分別以△ABC的三條邊為直徑向外作半圓,其半圓的面積由小到大分別記作S1、S2、S3,請(qǐng)問S1+S2與S3有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)分別以直角三角形的三條邊為直徑作半圓,如圖3所示,其面積由小到大分別記作S1、S2、S3,根據(jù)(2)中的探索,直接回答S1+S2與S3有怎樣的數(shù)量關(guān)系;
(4)若Rt△ABC中,AC=6,BC=8,求出圖4中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省中考真題 題型:解答題

如圖甲,分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上),若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1。
(1)求B點(diǎn)坐標(biāo);
(2)求證:ME是⊙P的切線;
(3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),①求△ACQ周長的最小值;②若FQ=t,S△ACQ=s,直接寫出s與t之間的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年湖北省荊州市蘆陵中學(xué)九年級(jí)第二次質(zhì)檢試題數(shù)學(xué)卷 題型:解答題

(本題滿分12分)如圖甲,分別以兩個(gè)彼此相鄰的正方形?OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線y=14x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.

【小題1】(1)求B點(diǎn)坐標(biāo);
【小題2】(2)求證:ME是⊙P的切線;
【小題3】(3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),①求△ACQ周長的最小值;
②若FQ=t,SACQ=S,直接寫出S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案