【題目】⊙O的半徑為13cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=24cm,CD=10cm.則AB和CD之間的距離

【答案】7cn或17cm
【解析】解:作OE⊥AB于E,交CD于F,連結(jié)OA、OC,如圖,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE= AB=12,CF=DF= CD=5,
在Rt△OAE中,∵OA=13,AE=12,
∴OE= =5,
在Rt△OCF中,∵OC=13,CF=5,
∴OF= =12,
當(dāng)圓心O在AB與CD之間時(shí),EF=OF+OE=12+5=17;
當(dāng)圓心O不在AB與CD之間時(shí),EF=OF﹣OE=12﹣5=7;
即AB和CD之間的距離為7cn或17cm.
所以答案是7cn或17cm.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識(shí),掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測(cè)量某交通路口設(shè)立的路況顯示牌的立桿AB的高度,在D處用高1.2m的測(cè)角儀CD,測(cè)得最高點(diǎn)A的仰角為32°,已知觀測(cè)點(diǎn)D到立桿AB的距離DB為3.8m,求立桿AB的高度.(結(jié)果精確到0.1m)
【參考數(shù)據(jù):sin32°=0.53,cos32°=0.85,tan32°=0.62】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OE平分∠AOB,BD⊥OA于點(diǎn)D,AC⊥BO于點(diǎn)C,則圖中全等三角形共有_______對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,CAB=90°.試求:

(1)AD的長;

(2)ABE的面積;

(3)ACE和△ABE的周長的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB45,AOB內(nèi)有一定點(diǎn)P,且OP10.在OA上有一動(dòng)點(diǎn)Q,OB上有一動(dòng)點(diǎn)R.若ΔPQR周長最小,則最小周長是()

A. 10 B. C. 20 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC與點(diǎn)O在10×10的網(wǎng)格中的位置如圖所示

(1)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的圖形;
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°后的圖形;
(3)若⊙M能蓋住△ABC,則⊙M的半徑最小值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠ACB=90°,∠A=30°BD△ABC的角平分線,DEAB于點(diǎn)E.

(1)如圖1,連接EC,求證:△EBC是等邊三角形;

(2)點(diǎn)M是線段CD上的一點(diǎn)(不與點(diǎn)C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MGDE延長線于點(diǎn)G.求證:AD=DG+MD

(3)點(diǎn)N是線段AD上的一點(diǎn),以BN為一邊,在BN的下方作∠BNG=60°,NGDE延長線于點(diǎn)G.請(qǐng)?jiān)趫D3中畫出圖形,并直接寫出ND,DGAD數(shù)量之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D為邊AB的中點(diǎn),DE∥BC,將△ABC沿線段DE折疊,使點(diǎn)A落在點(diǎn)F處,若∠B=50°,則∠EDF=_______,∠BDF=_______,若AB=10cm,則FD= ________cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;

(2)已知AC=20,AB=12,求CF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案