(2007•長(zhǎng)春)如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,以△ABC的一邊為邊畫(huà)等腰三角形,使它的第三個(gè)頂點(diǎn)在△ABC的其他邊上.請(qǐng)?jiān)趫D①,圖②,圖③中分別畫(huà)出一個(gè)符合條件的等腰三角形,且三個(gè)圖形中的等腰三角形各不相同,并在圖中標(biāo)明所畫(huà)等腰三角形的腰長(zhǎng).(不要求尺規(guī)作圖)

【答案】分析:1、以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交AB于點(diǎn)D,連接CD即可得到等腰三角形DBC;
2、以A為圓心,AC長(zhǎng)為半徑畫(huà)弧,交AB與D,連接CD即可;
3、以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交AB于D,連接CD即可.
解答:解:供以下方案供參考(每畫(huà)對(duì)1個(gè)得2分)
點(diǎn)評(píng):本題需仔細(xì)分析題意,結(jié)合圖形,利用圓規(guī)這一工具即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•長(zhǎng)春)如圖①,在Rt△ABC中,∠C=90°,邊BC的長(zhǎng)為20cm,邊AC的長(zhǎng)為hcm,在此三角形內(nèi)有一個(gè)矩形CFED,點(diǎn)D,E,F(xiàn)分別在AC,AB,BC上,設(shè)AD的長(zhǎng)為xcm,矩形CFED的面積為y(單位:cm2).
(1)當(dāng)h等于30時(shí),求y與x的函數(shù)關(guān)系式;(不要求寫(xiě)出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請(qǐng)說(shuō)明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時(shí)h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當(dāng)時(shí),y最大(。┲=.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2007•長(zhǎng)春)如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過(guò)A作x軸的平行線,交函數(shù)y=-(x<0)的圖象于B,交函數(shù)y=(x>0)的圖象于C,過(guò)C作y軸的平行線交BO的延長(zhǎng)線于D.
(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長(zhǎng)度之比;
(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長(zhǎng)度之比;
(3)在(2)的條件下,求四邊形AODC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省梅州市數(shù)學(xué)總復(fù)習(xí)測(cè)試卷(4) 函數(shù)(解析版) 題型:解答題

(2007•長(zhǎng)春)如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過(guò)A作x軸的平行線,交函數(shù)y=-(x<0)的圖象于B,交函數(shù)y=(x>0)的圖象于C,過(guò)C作y軸的平行線交BO的延長(zhǎng)線于D.
(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長(zhǎng)度之比;
(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長(zhǎng)度之比;
(3)在(2)的條件下,求四邊形AODC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年吉林省長(zhǎng)春市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•長(zhǎng)春)如圖①,在Rt△ABC中,∠C=90°,邊BC的長(zhǎng)為20cm,邊AC的長(zhǎng)為hcm,在此三角形內(nèi)有一個(gè)矩形CFED,點(diǎn)D,E,F(xiàn)分別在AC,AB,BC上,設(shè)AD的長(zhǎng)為xcm,矩形CFED的面積為y(單位:cm2).
(1)當(dāng)h等于30時(shí),求y與x的函數(shù)關(guān)系式;(不要求寫(xiě)出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請(qǐng)說(shuō)明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時(shí)h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當(dāng)時(shí),y最大(。┲=.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年吉林省長(zhǎng)春市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•長(zhǎng)春)如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過(guò)A作x軸的平行線,交函數(shù)y=-(x<0)的圖象于B,交函數(shù)y=(x>0)的圖象于C,過(guò)C作y軸的平行線交BO的延長(zhǎng)線于D.
(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長(zhǎng)度之比;
(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長(zhǎng)度之比;
(3)在(2)的條件下,求四邊形AODC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案