在△ABC中,∠C=90°,AC=3,BC=4,CD是斜邊AB上的高,點(diǎn)E在斜邊AB上,過(guò)點(diǎn)E作直線(xiàn)與△ABC的直角邊相交于點(diǎn)F,設(shè)AE=x,△AEF的面積為y.
(1)求線(xiàn)段AD的長(zhǎng);
(2)若EF⊥AB,當(dāng)點(diǎn)E在線(xiàn)段AB上移動(dòng)時(shí),
①求y與x的函數(shù)關(guān)系式(寫(xiě)出自變量x的取值范圍)
②當(dāng)x取何值時(shí),y有最大值?并求其最大值;
(3)若F在直角邊BC上(點(diǎn)F與B、C兩點(diǎn)均不重合),點(diǎn)E在斜邊AB上移動(dòng),試問(wèn):是否存在直線(xiàn)EF將△ABC的周長(zhǎng)和面積同時(shí)平分?若存在直線(xiàn)EF,求出x的值;若不存在直線(xiàn)EF,請(qǐng)說(shuō)明理由.

【答案】分析:(1)先根據(jù)勾股定理求出AB的長(zhǎng),再根據(jù)Rt△ADC∽R(shí)t△ACB,利用其相似比即可求出AD的長(zhǎng);
(2)①分別根據(jù)x的取值范圍及三角形的面積公式分類(lèi)可得x、y的函數(shù)關(guān)系式;
②根據(jù)①中所求的函數(shù)關(guān)系式求出其最值即可.
(3)先求得△ABC的面積的,進(jìn)而得到△AEF得到面積的函數(shù)關(guān)系式,讓它等于3列式即可求解.
解答:解:(1)∵△ABC中,∠C=90°,AC=3,BC=4,
∴AB==5,
∵CD⊥AB,
∴∠CDA=∠ACB,
又∠CAD=∠CAD,
∴Rt△ADC∽R(shí)t△ACB,
=,即=,AD=

(2)①由于E的位置不能確定,故應(yīng)分兩種情況討論:
如圖A:當(dāng)0<x≤AD,即0<x≤時(shí),
∵EF⊥AB,
∴Rt△AEF∽R(shí)t△ACB,即=,
∵AC=3,BC=4,AE=x,
=,EF=x,
S△AEF=y=AE•EF=x•x=x2
如圖B:當(dāng)AD<x≤AB,即<x≤5時(shí),
∵EF⊥AB,
∴Rt△BEF∽R(shí)t△BCA,
=,
∵AE=x,△AEF的面積為y,=,
∴EF=
y=×AE×EF=x•=-
②當(dāng)如圖A:當(dāng)0<x≤AD,即0<x≤時(shí),
S△AEF=y=AE•EF=x•x=x2,當(dāng)x=AD,即x=時(shí),y最大=×(2=
如圖B:當(dāng)AD<x≤BD,即<x≤5時(shí),
y=(5-x)=-,y最大=,此時(shí)x=2.5<5,故成立.
故y最大=

(3)不存在.
根據(jù)題意可知:直線(xiàn)EF把△ABC的周長(zhǎng)分為相等的兩部分,
即AC+CF+AE=FB+EB,
又∵CF+FB=BC,
∴3+x+4-FB=FB+5-x,即FB=x+1,
∵sinB==,
∴EF=FB•sinB=(x+1),
又∵直線(xiàn)EF把△ABC的面積分為相等的兩部分,
∴S△EFB=EB•FE=S△ABC=3,
(5-x)•(x+1)=3,
化簡(jiǎn)得:x2-4x+5=0,
∵△=b2-4ac=16-20=-4<0,
∴此方程無(wú)解,
故不存在x,直線(xiàn)EF將△ABC的周長(zhǎng)和面積同時(shí)平分.
點(diǎn)評(píng):此題比較復(fù)雜,是典型的動(dòng)點(diǎn)問(wèn)題,涉及面較廣,涉及到勾股定理、二次函數(shù)的最值及相似三角形的有關(guān)知識(shí),綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線(xiàn)交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長(zhǎng)分別為18cm和12cm,則線(xiàn)段AE的長(zhǎng)等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線(xiàn)長(zhǎng)為( 。
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案