如圖,PA,PB是⊙O的兩條切線,A,B分別是切點,點C是上任意一點,連接OA,OB,CA,CB,∠P=70°,求∠ACB的度數(shù).

【答案】分析:由PA,PB是⊙O的兩條切線,可知∠PAO=∠PBO=90°;根據(jù)已知條件∠P=70°,可將∠AOB的度數(shù)求出,再根據(jù)同弧所對的圓周角是圓心角的一半,可將∠ACB的度數(shù)求出.
解答:解:∵PA,PB是⊙O的切線,OA,OB是半徑,
∴∠PAO=∠PBO=90°;
又∵∠PAO+∠PBO+∠AOB+∠P=360°,∠P=70°,
∴∠AOB=110°,
∵∠AOB是圓心角,∠ACB是圓周角,
∴∠ACB=55°.
點評:本題主要考查切線的性質及圓周角定理的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA,PB是⊙O的切線,切點分別為A,B,且∠APB=50°,點C是優(yōu)弧
AB
上的一點,則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據(jù)圓的對稱性,寫出△PAB的三個正確的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點分別是A、B,點C是⊙O上異與點A、B的點,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習冊答案