如圖,△ABC是邊長(zhǎng)為6cm的等邊三角形,被一平行于BC的矩形所截,AB被截成三等分,則圖中陰影部分的面積為


  1. A.
    4cm2
  2. B.
    2數(shù)學(xué)公式cm2
  3. C.
    3數(shù)學(xué)公式cm2
  4. D.
    4數(shù)學(xué)公式cm2
C
分析:由題意可以推出EH∥FG∥BC,即可知△AEH∽△AFG∽△ABC,結(jié)合已知條件便可推出S△AEH:S△AFG:S△ABC=1:4:8,然后求出△ABC的面積,即可推出陰影部分的面積.
解答:解:過(guò)A作AL⊥CB于L,
∵△ABC是邊長(zhǎng)為6cm的等邊三角形,
∴AL=AB•sin60°=6×=3(cm),
∴△ABC的面積=CB•AL=9cm2,
∵EH∥FG∥BC,
∴△AEH∽△AFG∽△ABC,
∵AB被截成三等分,
∴S△AEH:S△AFG:S△ABC=1:4:9,
∴陰影部分的面積=S△AFG-S△AEH=4-=3cm2
故選C.
點(diǎn)評(píng):本題主要考查相似三角形的判定和性質(zhì)、等邊三角形的性質(zhì),關(guān)鍵在于求出S△AEH:S△AFG:S△ABC=1:4:9.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長(zhǎng)為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫(xiě)出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點(diǎn)D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫(huà)出△DEF,說(shuō)明它的形狀,并計(jì)算它的周長(zhǎng);
③根據(jù)“線動(dòng)成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過(guò)程中掃過(guò)的部分組成的平面圖形的形狀是什么?并計(jì)算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)當(dāng)運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溧水縣一模)如圖,△ABC是邊長(zhǎng)為4的等邊三角形,將△ABC沿直線BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到△DCE,連結(jié)BD,交AC于F.
(1)猜想BD與DE的位置關(guān)系,并證明你的結(jié)論;
(2)求△BDE的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湘潭)如圖,△ABC是邊長(zhǎng)為3的等邊三角形,將△ABC沿直線BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是邊長(zhǎng)為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°,以D為頂點(diǎn)做一個(gè)60°角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則△AMN的周長(zhǎng)為
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案