【題目】在一條南北方向的公路上,有一輛出租車停在A地,乘車的第一位客人向南走3千米下車;該車?yán)^續(xù)向南開,又走了2千米后,上來第二位客人,第二位客人乘車向北走7千米下車,此時恰好有第三位客人上車,先向北走3千米,又調(diào)頭向南走,結(jié)果下車時出租車恰好到了A地.
(1)如果以A地為原點,向北方向為正方向,用1個單位表示1千米,在數(shù)軸上表示出第一位客人和第二位客人下車的位置;
(2)第三位客人乘車走了多少千米?
(3)規(guī)定出租車的收費標(biāo)準(zhǔn)是4千米內(nèi)付7元,超過4千米的部分每千米加付1元(不足1千米按1千米算),那么該出租車司機在這三位客人中共收了多少錢?
【答案】(1) 第一位客人在點B處下車,第二位客人在點C處下車;(2) 第三位客人乘車走了8千米;(3) 該出租車司機在這三位客人中共收了28元.
【解析】
(1)根據(jù)題意在數(shù)軸上表示出第一位客人下車的地點B,第二位客人下車的地點C即可;
(2)結(jié)合數(shù)軸列式,然后根據(jù)有理數(shù)的加減混合運算進(jìn)行計算即可;
(3)根據(jù)路程分別計算出三位客人的支付錢數(shù),再根據(jù)有理數(shù)的加法運算法則進(jìn)行計算即可求解.
(1)如圖所示,
第一位客人在點B處下車,第二位客人在點C處下車;
(2)3+(2+3)=3+5=8千米,
答:第三位客人乘車走了8千米;
(3)第一位客人共走3千米,付7元,
第二位客人共走7千米,付7+1×(7-4)=7+3=10元,
第三位客人共走8千米,付7+1×(8-4)=11元,
7+10+11=28元,
∴該出租車司機在這三位客人中共收了28元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);
(2)如圖(2),將∠COD繞頂點O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時,∠COE=2∠DOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.
(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時,求PB的長;
②直接寫出旋轉(zhuǎn)過程中線段PB長的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是( )
A.94分,96分
B.96分,96分
C.94分,96.4分
D.96分,96.4分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點C(0,-2),直線l:y=kx-2k無論k取何值,直線總過定點B,
(1)求定點B的坐標(biāo).
(2)如圖1,若點D為直線BC上(點(-1,-3)除外)一動點,過點D作x軸的垂線交y= - 3于點E,點F在直線BC上,距離D點為個單位,D點橫坐標(biāo)為t,ΔDEF的面積為S,求S與t函數(shù)關(guān)系式.
(3)若直線BC關(guān)于x軸對稱后再向上平移5個單位得到直線B1C1,如圖2,點G(1,a)和H(6,b)是直線B1C1上兩點,點P(m,n)為第一象限內(nèi)(G、H兩點除外)的一點,,且mn=6,直線PG和PH為分別交y軸于點MN兩點,問線段OM、ON有什么數(shù)量關(guān)系,請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:
每臺甲型收割機的租金 | 每臺乙型收割機的租金 | |
A地區(qū) | 1800 | 1600 |
B地區(qū) | 1600 | 1200 |
(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設(shè)計出來;
(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.
(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com