【題目】(一)問題提出:如何把n個邊長為1的正方形,剪拼成一個大正方形?
(二)解決方法
探究一:若n是完全平方數(shù),我們不用剪切小正方形,可直接將小正方形拼成一個大正方形,如圖(1),用四個邊長為1的小正方形可以拼成一個大正方形.
問題1:請用9個邊長為1的小正方形在圖(2)的位置拼成一個大正方形.
探究二:若n=2,5,10,13等這些數(shù),都可以用兩個正整數(shù)的平方和來表示,以n=5為例,用5個邊長為1的小正方形剪拼成一個大正方形.
(1)計算:拼成的大正方形的面積為5,邊長為,可表示成;
(2)剪切:如圖(3)將5個小正方形按如圖所示分成5部分,虛線為剪切線;
(3)拼圖:以圖(3)中的虛線為邊,拼成一個邊長為的大正方形,如圖(4).
問題2:請仿照上面的研究方式,用13個邊長為1的小正方形剪拼成一個大正方形;
(1)計算:拼成的大正方形的面積為____,邊長為_____,可表示成____;
(2)剪切:請仿照圖(3)的方法,在圖(5)的位置畫出圖形.
(3)拼圖:請仿照圖(4)的方法,在圖(6)的位置出拼成的圖.
科目:初中數(shù)學 來源: 題型:
【題目】[知識生成]通常,用兩種不同的方法計算同一個圖形的面積,可以得到一個恒等式.
例如:如圖①是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的形狀拼成一個正方形.請解答下列問題:
(1)圖②中陰影部分的正方形的邊長是________________;
(2)請用兩種不同的方法求圖②中陰影部分的面積:
方法1:________________________;方法2:_______________________;
(3)觀察圖②,請你寫出(a+b)2、、之間的等量關系是____________________________________________;
(4)根據(jù)(3)中的等量關系解決如下問題:若,,則=
[知識遷移]
類似地,用兩種不同的方法計算同一幾何體的體積,也可以得到一個恒等式.
(5)根據(jù)圖③,寫出一個代數(shù)恒等式:____________________________;
(6)已知,,利用上面的規(guī)律求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并解決有關問題:
我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代
數(shù)式,如化簡代數(shù)式|m+1|+|m﹣2|時,可令 m+1=0 和 m﹣2=0,分別求得 m=﹣1,m=2(稱﹣1,2 分別為|m+1|與|m﹣2|的零點值).在實數(shù)范圍內(nèi), 零點值 m=﹣1 和 m=2 可將全體實數(shù)分成不重復且不遺漏的如下 3 種情況:
(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.從而化簡代數(shù)式|m+1|+|m﹣2| 可分以下 3 種情況:
(1)當 m<﹣1 時,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;
(2)當﹣1≤m<2 時,原式=m+1﹣(m﹣2)=3;
(3)當 m≥2 時,原式=m+1+m﹣2=2m﹣1.
綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)分別求出|x﹣5|和|x﹣4|的零點值;
(2)化簡代數(shù)式|x﹣5|+|x﹣4|;
(3)求代數(shù)式|x﹣5|+|x﹣4|的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點,過點B作BE∥AD,交⊙O于點E,連接ED.
(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= +bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C(0,﹣3).
(1)求拋物線的解析式;
(2)D是y軸正半軸上的點,OD=3,在線段BD上任取一點E(不與B,D重合),經(jīng)過A,B,E三點的圓交直線BC于點F,
①試說明EF是圓的直徑;
②判斷△AEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個半徑為r(r<1)的圓形紙片在邊長為10的正六邊形內(nèi)任意運動,則在該六邊形內(nèi),這個圓形紙片不能接觸到的部分的面積是( )
A.πr2
B.
C. r2
D. r2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(0,a),B(b,0),C(6,c)三點,其中a,b,c滿足關系式|a-2|+(b-3)2+=0,
(1)求A.B.C的坐標;
(2)求三角形ABC的面積;
(3)在y軸上是否存在點P,使三角形APC的面積與三角形ABC的面積相等?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,∠BCD=135°,且AB=3cm,BC=7cm,CD=5cm,點M從點A出發(fā)沿折線A﹣B﹣C﹣D運動到點D,且在AB上運動的速度為cm/s,在BC上運動的速度為1cm/s,在CD上運動的速度為cm/s,連接AM、DM,當點M運動時間為_____(s)時,△ADM是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形OMN與正方形ABCD,半徑OM與邊AB重合,弧MN的長等于AB的長,已知AB=2,扇形OMN沿著正方形ABCD逆時針滾動到點O首次與正方形的某頂點重合時停止,則點O經(jīng)過的路徑長 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com