分析 (1)分別證明:∠ABC=∠DOC,∠CBO=∠DOC即可.
(2)在BC上截DE=DO,證CE=OE=BE,則E為BC的中點(diǎn),則BC=2EC=2(DE+DC)=2(OD+CD),代入化簡(jiǎn)即可,也可以用四點(diǎn)共圓去思考更加簡(jiǎn)單.
解答 (1)證明:如圖1中,∵AO=BO=t,∠AOB=90°,
∴∠OAB=∠OBA=45°,
∵∠BCO=45°+∠COD=∠BAO+∠ABC,
∴∠COD=∠ABC,
∵OD⊥BC,
∴∠CDO=90°,
∵∠DOC+∠DCO=90°,∠CBO+∠BCO=90°,
∴∠DOC=∠CBO,
∴∠ABC=∠CBO.
(2)解:中圖1中,作DE=DO,
∵∠ODE=90°,
∴∠DEO=45°=∠EBO+∠EOB,
∵∠ABC=∠CBO=$\frac{1}{2}$∠ABO=22.5°,
∴∠EOB=∠EBO=22.5°,
∴EB=EO,
∵∠ECO=∠EOC=67.5°,
∴EC=EO,
∴BC=2EC=2(DE+DC)=2DO+2DC,
∴$\frac{BC-2DO}{DC}$=$\frac{2DC}{DC}$=2.
(3)結(jié)論:PB⊥AP,如圖2,理由如下:
解:方法一:作OM⊥OP交PB于M,交AP的延長(zhǎng)線于N,
∵∠APO=135°,
∴∠OPN=∠N=45°,
∴OP=ON,
∵∠AOB=∠PON=90°,
∴∠BOP=∠AON,
在△OBP和△OAN中,
$\left\{\begin{array}{l}{OB=OA}\\{∠BOP=∠AON}\\{OP=ON}\end{array}\right.$,
∴△BOP≌△AON,
∴∠BPO=∠N=45°,
∵∠OPN=45°,
∴∠BPN=∠BPO+∠OPN=90°,
∴BP⊥AP.
證法二:∵∠APO=135°,∠ABO=45°,
∴∠APO+∠ABO=180°,
∴A、P、O、B四點(diǎn)共圓,
∴∠APB=∠AOB=90°,
即BP⊥AP.
點(diǎn)評(píng) 本題考查等腰三角形性質(zhì)、同角的余角相等、全等三角形的判定和性質(zhì)等知識(shí),通過(guò)添加輔助線構(gòu)造特殊三角形是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江蘇省句容市華陽(yáng)片七年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題
畫(huà)△ABC中BC邊上的高,下面的畫(huà)法中,正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 80° | B. | 90° | C. | 100° | D. | 130° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com