在△ABC中,AD是邊BC上的中線,AB=數(shù)學(xué)公式,AD=數(shù)學(xué)公式,AC=數(shù)學(xué)公式,則∠ABC=________.

60°
分析:先延長(zhǎng)BA到E,使得AE=AB=,然后根據(jù)勾股定理的逆定理求出直角三角形,根據(jù)邊長(zhǎng)判定角的度數(shù).
解答:解:
延長(zhǎng)BA到E,使得AE=AB=,即BE=2,連接CE,則CE∥AD,CE=2AD=2
∴AE2+CE2=AC2,
∴∠AEC=90°.
∵在Rt△BCE中,CE=BE,
∴∠ABC=60°.
故答案為:60°.
點(diǎn)評(píng):本題考查勾股定理的逆定理和解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是BC上的中線,BC=4,∠ADC=30°,把△ADC沿AD所在直線翻折后點(diǎn)C落在點(diǎn)C′的位置,那么點(diǎn)D到直線BC′的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD是BC邊上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的長(zhǎng).(結(jié)果保留根號(hào))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州二模)如圖,在△ABC中,AD是它的角平分線,∠C=90°,E在AB邊上,以AE為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,AD的弦心距為1,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD是∠BAC的平分線,DE、DF分別是△ABD和△ACD的高線,求證:AD⊥EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案