【題目】共享單車,綠色出行,現(xiàn)如今騎共享單車出行不但成為一種時(shí)尚,也稱為共享經(jīng)濟(jì)的一種新形態(tài),某校九(1班同學(xué)在街頭隨機(jī)調(diào)查了一些騎共享單車出行的市民,并將他們對各種品牌單車的選擇情況繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖(A摩拜單車Bofo單車;CHelloBike.請根據(jù)圖中提供的信息解答下列問題

1求出本次參與調(diào)查的市民人數(shù);

2將上面的條形圖補(bǔ)充完整

3若某區(qū)有10000名市民騎共享單車出行,根據(jù)調(diào)查數(shù)據(jù)估計(jì)該區(qū)有多少名市民選擇騎摩托單車出行?

【答案】1200;(2)答案見解析;(33000

【解析】試題分析:(1)根據(jù)B品牌人數(shù)及其所占百分比可得總?cè)藬?shù);

2)總?cè)藬?shù)分別乘以A、D所占百分比求出其人數(shù)即可補(bǔ)全圖形

3)總?cè)藬?shù)乘以樣本中A的百分比即可得.

試題解析:(1)本次參與調(diào)查的市民人數(shù)80÷40%=200(人);

2A品牌人數(shù)為200×30%=60(人),D品牌人數(shù)為200×15%=30(人),補(bǔ)全圖形如下

310000×30%=3000(人)

估計(jì)該區(qū)有3000名市民選擇騎摩拜單車出行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點(diǎn)

1求證:AC2=ABAD;

2求證:CEAD;

3若AD=4,AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張翔上午7:30出發(fā),從學(xué)校騎自行車去縣城,路程全長20km,中途因道路施工步行一段路.他步行的平均速度是5km/h

(1)若張翔騎車的平均速度是15km/h,當(dāng)天上午9:00到達(dá)縣城,則他騎車與步行各用多少時(shí)間?

(2)若張翔必須在當(dāng)天上午9:00之前趕到縣城,他的步行平均速度不變,則他騎車的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑為1的圓從原點(diǎn)出發(fā)沿x軸正方向滾動(dòng)一周,圓上一點(diǎn)由原點(diǎn)O到達(dá)點(diǎn)O′,圓心也從點(diǎn)A到達(dá)點(diǎn)A′.

1)點(diǎn)O′的坐標(biāo)為  ,點(diǎn)A′的坐標(biāo)為  ;

2)若點(diǎn)P是圓在滾動(dòng)過程中圓心經(jīng)過的某一位置,求以點(diǎn)P,點(diǎn)O,點(diǎn)O′為頂點(diǎn)的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競賽,從中抽取了部分學(xué)生成績進(jìn)行統(tǒng)計(jì),并按照成績從低到高分成A,B,C,D,E五個(gè)小組,繪制統(tǒng)計(jì)圖如下(未完成),解答下列問題:

1)樣本容量為  ,頻數(shù)分布直方圖中a  

2)扇形統(tǒng)計(jì)圖中D小組所對應(yīng)的扇形圓心角為n°,求n的值并補(bǔ)全頻數(shù)分布直方圖;

3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績優(yōu)秀的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

在解方程組或求代數(shù)式的值時(shí),可以用整體代入或整體求值的方法,化難為易.

1)解方程組

2)已知,求x+y+z的值

解:(1)把代入得:x+2×13.解得:x1

x1代入得:y0

所以方程組的解為

2×2得:8x+6y+4z20

得:x+y+z5

(類比遷移)

1)若,則x+2y+3z   

2)解方程組

(實(shí)際應(yīng)用)

打折前,買39A商品,21B商品用了1080元.打折后,買52A商品,28B商品用了1152元,比不打折少花了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠BAC=90°,AB=AC,A30),B0,1

1)將△ABC沿x軸的正方向平移t個(gè)單位,B、C兩點(diǎn)的對應(yīng)點(diǎn)B′、C′正好落在反比例函數(shù)y=的圖象上.請直接寫出C點(diǎn)的坐標(biāo)和t,k的值;

2)有一個(gè)Rt△DEF,∠D=90°∠E=60°,DE=2,將它放在直角坐標(biāo)系中,使斜邊EFx軸上,直角頂點(diǎn)D在(1)中的反比例函數(shù)圖象上,求點(diǎn)F的坐標(biāo);

3)在(1)的條件下,問是否存在x軸上的點(diǎn)M和反比例函數(shù)y=圖象上的點(diǎn)N,使得以B′、C′、MN為頂點(diǎn)的四邊形構(gòu)成平行四邊形?如果存在,直接寫出所有滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,E為對角線BD的延長線上一點(diǎn).

1)求證:AE=CE

2)若BC=6AE=10,∠BAE=120,求BE的長,并直接寫出DE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.

1)已知:如圖1,四邊形ABCD的頂點(diǎn)AB,C在網(wǎng)格格點(diǎn)上,請你在如下的57的網(wǎng)格中畫出3個(gè)不同形狀的等鄰邊四邊形ABCD,要求頂點(diǎn)D在網(wǎng)格格點(diǎn)上;

2)如圖2,矩形ABCD中,AB=,BC=5,點(diǎn)EBC邊上,連結(jié)DEAFDE于點(diǎn)F,若DE=CD,找出圖中的等鄰邊四邊形;

3)如圖3,在RtABC中,ACB=90°,AB=4,AC=2DBC的中點(diǎn),點(diǎn)MAB邊上一點(diǎn),當(dāng)四邊形ACDM等鄰邊四邊形時(shí),求BM的長.

查看答案和解析>>

同步練習(xí)冊答案