【題目】如圖,已知四邊形ABCD,AB∥CD,點E是BC延長線上一點,連接AC、AE,AE交CD于點F,∠1=∠2,∠3=∠4.
證明:
(1)∠BAE=∠DAC;
(2)∠3=∠BAE;
(3)AD∥BE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=25°,矩形ABCD的邊BC在OM上,對角線AC⊥ON.
(1)求∠ACD度數(shù);
(2)當AC=5時,求AD的長.(參考數(shù)據(jù):sin25°=0.42;cos25°=0.91;tan25°=0.47,結果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E、F分別為邊AD、BC上的點,EF=,點G、H分別為AB、CD邊上的點,連接GH,若線段GH與EF的夾角為45°,則GH的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,點D,E分別在邊AB、AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
在如圖中,線段PM與PN的數(shù)量關系是______,∠MPN的度數(shù)是______;
(2)探究證明
把△ADE繞點A逆時針方向旋轉到如圖的位置,
①判斷△PMN的形狀,并說明理由;
②求∠MPN的度數(shù);
(3)拓展延伸
若△ABC為直角三角形,∠BAC=90°,AB=AC=12,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點M,P,N分別為DE,DC,BC的中點.把△ADE繞點A在平面內(nèi)自由旋轉,如圖.
①△PMN的是______三角形.
②直接利用①中的結論,求△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結果繪制了如下兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號)
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學生.
(2)在條形統(tǒng)計圖中,請把空缺的部分補充完整;
(3)在扇形統(tǒng)計圖中,185型校服所對應扇形圓心角=
(4)若全校九年級共有學生800名,請估計穿170型校服的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,將△ABC繞點C順時針旋轉90°得到△A′B′C,M、M′分別是AB、A′B′的中點,若AC=8,BC=6,則線段MM′的長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)、求證:四邊形AODE是矩形;(2)、若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線∥AB,與 AB 之間的距離為 2 ,C、D 是直線上兩個動點(點 C在 D 點的左側),且 AB=CD=5.連接 AC、BC、BD,將△ABC 沿 BC 折疊得到△A′BC.若以 A′、C、B、D 為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com