如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點(diǎn),且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.

(1)求△ABC的面積;

(2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;

(3)已知圖形L的頂點(diǎn)均在⊙O上,當(dāng)圖形L的面積最大時(shí),求⊙O的面積.

考點(diǎn):

相似形綜合題.

分析:

(1)作AH⊥BC于H,根據(jù)勾股定理就可以求出AH,由三角形的面積公式就可以求出其值;

(2)如圖1,當(dāng)0<x≤1.5時(shí),由三角形的面積公式就可以表示出y與x之間的函數(shù)關(guān)系式,如圖2,當(dāng)1.5<x<3時(shí),重疊部分的面積為梯形DMNE的面積,由梯形的面積公式就可以求出其關(guān)系式;

(3)如圖4,根據(jù)(2)的結(jié)論可以求出y的最大值從而求出x的值,作FO⊥DE于O,連接MO,ME,求得∠DME=90°,就可以求出⊙O的直徑,由圓的面積公式就可以求出其值.

解答:

解:(1)如圖3,作AH⊥BC于H,

∴∠AHB=90°.

∵△ABC是等邊三角形,

∴AB=BC=AC=3.

∵∠AHB=90°,

∴BH=BC=

在Rt△ABC中,由勾股定理,得

AH=

∴S△ABC==

(2)如圖1,當(dāng)0<x≤1.5時(shí),y=S△ADE

作AG⊥DE于G,

∴∠AGD=90°,∠DAG=30°,

∴DG=x,AG=x,

∴y==x2,

∵a=>0,開(kāi)口向上,在對(duì)稱(chēng)軸的右側(cè)y隨x的增大而增大,

∴x=1.5時(shí),y最大=,

如圖2,當(dāng)1.5<x<3時(shí),作MG⊥DE于G,

∵AD=x,

∴BD=DM=3﹣x,

∴DG=(3﹣x),MF=MN=2x﹣3,

∴MG=(3﹣x),

∴y=,

=﹣;

(3),如圖4,∵y=﹣;

∴y=﹣(x2﹣4x)﹣,

y=﹣(x﹣2)2+,

∵a=﹣<0,開(kāi)口向下,

∴x=2時(shí),y最大=,

∴y最大時(shí),x=2,

∴DE=2,BD=DM=1.作FO⊥DE于O,連接MO,ME.

∴DO=OE=1,

∴DM=DO.

∵∠MDO=60°,

∴△MDO是等邊三角形,

∴∠DMO=∠DOM=60°,MO=DO=1.

∴MO=OE,∠MOE=120°,

∴∠OME=30°,

∴∠DME=90°,

∴DE是直徑,

S⊙O=π×12=π.

點(diǎn)評(píng):

本題考查了等邊三角形的面積公式的運(yùn)用,梯形的面積公式的運(yùn)用,勾股定理的運(yùn)用,圓周角定理的運(yùn)用,圓的面積公式的運(yùn)用,等邊三角形的性質(zhì)的運(yùn)用,二次函數(shù)的性質(zhì)的運(yùn)用,解答時(shí)靈活運(yùn)用等邊三角形的性質(zhì)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說(shuō)明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長(zhǎng);
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案