【題目】(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1.0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的頂點(diǎn)為D,DE⊥x軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】解:(1)由于拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),可設(shè)拋物線的解析式為:y=a(x+3)(x﹣1),
將C點(diǎn)坐標(biāo)(0,﹣3)代入,得:a(0+3)(0﹣1)=5,解得 a=1。
∴拋物線的解析式為:y=(x+3)(x﹣1),即y=x2+2x﹣3。
(2)如圖1,過點(diǎn)P作x軸的垂線,交AC于點(diǎn)N.
設(shè)直線AC的解析式為y=kx+m,由題意,得,解得。
∴直線AC的解析式為:y=﹣x﹣3。
設(shè)P點(diǎn)坐標(biāo)為(x,x2+2x﹣3),
則點(diǎn)N的坐標(biāo)為(x,﹣x﹣3),
∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x。
∵S△PAC=S△PAN+S△PCN,
∴。
∴當(dāng)x=時(shí),S有最大值,此時(shí)點(diǎn)P的坐標(biāo)為(,)。
(3)在y軸上是否存在點(diǎn)M,能夠使得△ADE是直角三角形。理由如下:
∵y=x2+2x﹣3=y=(x+1)2﹣4,∴頂點(diǎn)D的坐標(biāo)為(﹣1,﹣4)。
∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20。
設(shè)點(diǎn)M的坐標(biāo)為(0,t),分三種情況進(jìn)行討論:
①當(dāng)A為直角頂點(diǎn)時(shí),如圖2,
由勾股定理,得AM2+AD2=DM2,
即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=。
∴點(diǎn)M的坐標(biāo)為(0,)。
②當(dāng)D為直角頂點(diǎn)時(shí),如圖3,
由勾股定理,得DM2+AD2=AM2,
即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=。
∴點(diǎn)M的坐標(biāo)為(0,)。
③當(dāng)M為直角頂點(diǎn)時(shí),如圖4,
由勾股定理,得AM2+DM2=AD2,
即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3。
∴點(diǎn)M的坐標(biāo)為(0,﹣1)或(0,﹣3)。
綜上所述,在y軸上存在點(diǎn)M,能夠使得△ADE是直角三角形,此時(shí)點(diǎn)M的坐標(biāo)為(0,)或(0,)或(0,﹣1)或(0,﹣3)。
【解析】(1)已知拋物線上的三點(diǎn)坐標(biāo),利用待定系數(shù)法可求出該二次函數(shù)的解析式。
(2)過點(diǎn)P作x軸的垂線,交AC于點(diǎn)N,先運(yùn)用待定系數(shù)法求出直線AC的解析式,設(shè)P點(diǎn)坐標(biāo)為(x,x2+2x﹣3),根據(jù)AC的解析式表示出點(diǎn)N的坐標(biāo),再根據(jù)S△PAC=S△PAN+S△PCN就可以表示出△PAC的面積,運(yùn)用頂點(diǎn)式就可以求出結(jié)論。
(3)分三種情況進(jìn)行討論:①以A為直角頂點(diǎn);②以D為直角頂點(diǎn);③以M為直角頂點(diǎn);設(shè)點(diǎn)M的坐標(biāo)為(0,t),根據(jù)勾股定理列出方程,求出t的值即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,A,B為格點(diǎn)
(Ⅰ)AB的長等于__
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點(diǎn)C,使得CA=CB且△ABC的面積等于,并簡要說明點(diǎn)C的位置是如何找到的__________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①若a>b,則c﹣a<c﹣b;
②若a>0,則=a;
③對角線互相平分且相等的四邊形是菱形;
④如果兩條弧相等,那么它們所對的圓心角相等.
其中原命題與逆命題均為真命題的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正確結(jié)論的個(gè)數(shù)為( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一個(gè)大正方形和四個(gè)一樣的小正方形,小明、小聰、小方分別用這些正方形設(shè)計(jì)出了圖1,圖2,圖3三種圖案:
(1)根據(jù)圖1,圖2中所標(biāo)數(shù)據(jù),求出大正方形和小正方形的邊長分別是多少厘米?
(2)若圖3中四個(gè)小正方形的重疊部分也是三個(gè)一樣的小正方形,求大正方形中未被小正方形覆蓋的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=k(x-2)的圖象交點(diǎn)為A(3,2),B(x,y).
(1)求反比例函數(shù)與一次函數(shù)的解析式及B點(diǎn)坐標(biāo);
(2)若C是y軸上的點(diǎn),且滿足△ABC的面積為10,求C點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D,證明:△ABD≌△ACE,DE=BD+CE;
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角,請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com