(2006•青海)如圖DE是△ABC的中位線,F(xiàn)是DE的中點,CF的延長線交AB于點G,則AG:GD等于( )

A.2:1
B.3:1
C.3:2
D.4:3
【答案】分析:過E作EM∥AB與GC交于點M,構(gòu)造全等三角形把DG轉(zhuǎn)移到和AG有關(guān)的中位線處,可得所求線段的比.
解答:解:過E作EM∥AB與GC交于點M,
∴△EMF≌△DGF,
∴EM=GD,
∵DE是中位線,
∴CE=AC,
又∵EM∥AG,
∴△CME∽△CGA,
∴EM:AG=CE:AC=1:2,
又∵EM=GD,
∴AG:GD=2:1.
故選A.
點評:本題考查三角形中位線定理和全等三角形的性質(zhì),由中點構(gòu)造全等三角形,從而將求解同一直線上的兩條線段的比值問題轉(zhuǎn)化為不共線的兩條線段的比值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年青海省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設(shè)點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當(dāng)t為何值時,PQ平行于y軸;
(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設(shè)點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當(dāng)t為何值時,PQ平行于y軸;
(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設(shè)點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當(dāng)t為何值時,PQ平行于y軸;
(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年青海省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•青海)如下圖,直線a∥b,則∠A=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷38(朝暉初中 裘曉麗 周光華)(解析版) 題型:選擇題

(2006•青海)如圖DE是△ABC的中位線,F(xiàn)是DE的中點,CF的延長線交AB于點G,則AG:GD等于( )

A.2:1
B.3:1
C.3:2
D.4:3

查看答案和解析>>

同步練習(xí)冊答案