【題目】一名男生推鉛球,鉛球行進(jìn)的高度y(單位:m)與水平距離x(單位:m)之間的關(guān)系是

1)鉛球行進(jìn)的最大高度是多少?

2)該男生把鉛球推出的水平距離是多少?

3)鉛球在下落的過(guò)程中,行進(jìn)高度由m變?yōu)?/span>m時(shí),鉛球行進(jìn)的水平距離是多少?

【答案】(1)3m;(2)4m.

【解析】試題分析:(1)通過(guò)配方法把函數(shù)的解析式化為頂點(diǎn)式,然后跟據(jù)拋物線的性質(zhì)可求其最值;

(2)令y=0,求出落地點(diǎn),得到鉛球被推出的水平距離;

(3)利用代入法分別求出橫坐標(biāo)的值,求出鉛球行進(jìn)的水平距離.

試題解析:(1) =

,y的最大值為3,即鉛球行進(jìn)的最大高度是3m.

(2)y=0得,

解這個(gè)方程得,x1=10,x2=-2(負(fù)值舍去).

∴該男生把鉛球推出的水平距離是10 m.

(3) 由函數(shù)的性質(zhì)及上問(wèn)可知,鉛球下落過(guò)程中4≤x10.

,解得x1=3(舍去),x2=5.

,解得x1=-1(舍去),x2=9.

9-5=4,

∴鉛球行進(jìn)的水平距離是4m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是菱形,以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸建立平面直角坐標(biāo)系.若點(diǎn)的坐標(biāo)為,直線軸相交于點(diǎn),連接

1)求菱形的邊長(zhǎng);

2)證明為直角三角形;

3)直線上是否存在一點(diǎn)使得的面積與的面積相等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某百貨商店服裝柜在銷(xiāo)售中發(fā)現(xiàn):某品牌童裝每天可售出20件,每件盈利40元,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每件童裝每降價(jià)1元,日銷(xiāo)售量將增加2件.

(1)當(dāng)每件童裝降價(jià)多少元時(shí),一天的盈利最多?

(2)若商場(chǎng)要求一天的盈利為1200元,同時(shí)又使顧客得到實(shí)惠,每件童裝降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)圖象經(jīng)過(guò)(﹣24).

1)如果點(diǎn)(a,1)和(﹣1b)在函數(shù)圖象上,求a,b的值;

2)過(guò)圖象上一點(diǎn)Py軸的垂線,垂足為Q,SOPQ,求Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=的圖象經(jīng)過(guò)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過(guò)點(diǎn)A,在第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)圖象上,過(guò)點(diǎn)BBCx軸,交y軸于點(diǎn)C,且AC=AB,求:

(1)這個(gè)反比例函數(shù)的解析式;

(2)ΔABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC=90°,ADBC,垂足為D,則下面的結(jié)論中正確的個(gè)數(shù)為( 。

ABAC互相垂直;

ADAC互相垂直;

③點(diǎn)CAB的垂線段是線段AB;

④線段AB的長(zhǎng)度是點(diǎn)BAC的距離;

⑤線段ABB點(diǎn)到AC的距離.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1)(﹣42007·0.252018

232y24y+5

3)(a+2b)(a2b)﹣ba8b

4)(ab)(a2+ab+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)工程,甲隊(duì)單獨(dú)做需40天完成,若乙隊(duì)先做30天后,甲、乙兩隊(duì)一起合做20天恰好完成任務(wù),請(qǐng)問(wèn):

1)乙隊(duì)單獨(dú)做需要多少天才能完成任務(wù)?

2)現(xiàn)將該工程分成兩部分,甲隊(duì)做其中一部分工程用了x天,乙隊(duì)做另一部分工程用了y天,若x; y都是正整數(shù),且甲隊(duì)做的時(shí)間不到15天,乙隊(duì)做的時(shí)間不到70天,那么兩隊(duì)實(shí)際各做了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買(mǎi)10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu). 經(jīng)調(diào)查:購(gòu)買(mǎi)3臺(tái)甲型設(shè)備比購(gòu)買(mǎi)2臺(tái)乙型設(shè)備多花16萬(wàn)元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少花6萬(wàn)元.

(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購(gòu)買(mǎi)節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案