【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為________.
【答案】
【解析】證明△AMO≌△CNO,將四邊形CMON的面積轉(zhuǎn)化為△ACO的面積,即可用割補法求出陰影部分的面積.
因為點O是AB的中點,所以AO=BO=CO,
由勾股定理得AB=.
因為∠ACB=90°,∠EOF=90°,所以∠CMO+∠CNO=180°,又∠AMO+∠CMO=180°,所以∠AMO=∠CNO,
又因為∠A=∠B,AO=CO,
所以△AMO≌△CNO.
所以四邊形CMON的面積=△CMO的面積+△CNO的面積
=△CMO的面積+△CNO的面積=△ACO的面積=△ABC面積的一半.
所以陰影部分的面積=扇形OEF的面積-四邊形CMON的面積
=扇形OEF的面積-△ACO的面積
=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:y=x+b與x軸交于點A,與y軸交于點B,且點C的坐標(biāo)為(4,﹣4).
(1)點A的坐標(biāo)為 ,點B的坐標(biāo)為 ;(用含b的式子表示)
(2)當(dāng)b=4時,如圖所示.連接AC,BC,判斷△ABC的形狀,并證明你的結(jié)論;
(3)過點C作平行于y軸的直線l2,點P在直線l2上.當(dāng)﹣5<b<4時,在直線l1平移的過程中,若存在點P使得△ABP是以AB為直角邊的等腰直角三角形,請直接寫出所有滿足條件的點P的縱坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知一次函數(shù)的圖象經(jīng)過,兩點.求這個一次函數(shù)的解析式;并判斷點是否在這個一次函數(shù)的圖象上;
(2)如圖所示,點D是等邊內(nèi)一點,,,,將繞點A逆時針旋轉(zhuǎn)到的位置,求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣某中學(xué)開展“慶五四”歌詠比賽活動,八年級(1)、(2)班各選出5名選手參加比賽,兩個班選出的5名選手的比賽成績(滿分為100分)如圖所示.
(1)根據(jù)圖示填寫下表:
班級 | 中位數(shù)(分) | 眾數(shù)(分) |
八(1) | ________________ | 85 |
八(2) | 80 | ________________ |
(2)請你計算八(1)和八(2)班的平均成績各是多少分.
(3)結(jié)合兩班比賽成績的平均數(shù)和中位數(shù),分析哪個班級的比賽成績較好.
(4)請計算八(1)、八(2)班的比賽成績的方差,并說明哪個班的成績比較穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,PB=PC,給出下面結(jié)論:①BP=CP,②EB=EC,③AD⊥BC,④EA平分∠BEC,其中正確的結(jié)論有( 。
A.①②④B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費用最少,最少總費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 l 上有 A、B 兩點,AB=12cm,點 O 是線段 AB 上的一點,OA=2OB.
(1)OA=_______cm,OB=________cm;
(2)若點 C 是線段AB的中點,求線段 CO 的長;
(3)若動點 P、Q分別從 A、B同時出發(fā),向右運動,點P的速度為2 厘米/秒,點Q的速度為1厘米/秒,設(shè)運動時間為x秒,當(dāng) x=_____秒時,PQ=4cm;
(4)有兩條射線 OC、OD 均從射線 OA 同時繞點O順時針方向旋轉(zhuǎn),OC旋轉(zhuǎn)的速度為6度/秒,OD 旋轉(zhuǎn)的速度為2度/秒.當(dāng)OC與OD第一次重合時,OC、OD 同時停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時間為 t 秒,當(dāng)t為何值時,射線OC⊥OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值.
(1)6a2-5a(a+2b-1)+a(-a+10b)+5,其中a=-1,b=2008;
(2)3xy2﹣[xy﹣2(2xy﹣x2y)+2xy2]+3x2y,其中x、y滿足(x+2)2+|y﹣1|=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com