將拋物線y=2(x-1)2-4沿y軸翻折,所得拋物線的關(guān)系式是
y=2(x+1)2-4
y=2(x+1)2-4
分析:根據(jù)點(diǎn)關(guān)于y軸對(duì)稱的特點(diǎn)列出關(guān)于x的方程即可.
解答:解:∵點(diǎn)關(guān)于y軸對(duì)稱時(shí)“縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)”
∴y=2(x-1)2-4=2(-x-1)2-4,即y=2(x+1)2-4.
故答案為:y=2(x+1)2-4.
點(diǎn)評(píng):本題考查的是二次函數(shù)的圖象與幾何變換,熟知關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

43、將拋物線y=x2+2x-3向左平移4個(gè)單位,再向下平移3個(gè)單位,所得拋物線的函數(shù)表達(dá)式為
y=x2+10x+18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧波模擬)在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y1=ax2+3x+c的圖象經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.
(1)求:二次函數(shù)y1的解析式及B點(diǎn)坐標(biāo);
(2)若將拋物線y1以x=3為對(duì)稱軸向右翻折后,得到一個(gè)新的二次函數(shù)y2,已知二次函數(shù)y2與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D、點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));
①當(dāng)點(diǎn)E在二次函數(shù)y1的圖象上時(shí),求OP的長.
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長度,同時(shí)線段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動(dòng),P點(diǎn)也同時(shí)停止運(yùn)動(dòng)).過Q點(diǎn)作x軸的垂線,與直線AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動(dòng)),若P點(diǎn)運(yùn)動(dòng)t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=-(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,則平移后拋物線的表達(dá)式
y=-x2-1
y=-x2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=2x2向下平移1個(gè)單位,得到的拋物線是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=-2(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,得到的拋物線的表達(dá)式為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案