【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)的坐標(biāo)分別為(﹣6,7)、(﹣3,0)、(0,3).
(1)畫出△ABC,并求△ABC的面積;在△ABC中,點(diǎn)C經(jīng)過平移后的對應(yīng)點(diǎn)為C′(5,4),將△ABC作同樣的平移得到△A′B′C′,畫出平移后的△A′B′C′,并寫出點(diǎn)A′,B′的坐標(biāo);
(2)P(﹣3,m)為△ABC中一點(diǎn),將點(diǎn)P向右平移4個單位后,再向上平移6個單位得到點(diǎn)Q(n,﹣3),則m= , n= .
【答案】
(1)
解:如圖,△ABC即為所求;△A′B′C′即為所求,A′(﹣1,8),B′(2,1)
(2)﹣9;1
【解析】解:A′(﹣1,8),B′(2,1);(3)∵P(﹣3,m)為△ABC中一點(diǎn),將點(diǎn)P向右平移4個單位后,再向上平移6個單位得到點(diǎn)Q(n,﹣3),
∴n=﹣3+4=1,m+6=﹣3,
∴n=1,m=﹣9.
故答案為:﹣9,1.
(1)根據(jù)各點(diǎn)在坐標(biāo)系中的位置描出各點(diǎn),并順次連接即可;根據(jù)圖形平移的性質(zhì)畫出平移后的△A′B′C′,并寫出點(diǎn)A′,B′的坐標(biāo)即可;(2)根據(jù)點(diǎn)平移的性質(zhì)即可得出m、n的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)若拋物線與y軸交點(diǎn)的坐標(biāo)為(0,1),求拋物線與x軸交點(diǎn)的坐標(biāo);
(2)證明:無論p為何值,拋物線與x軸必有交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程: 如圖,已知DE∥BC,DF、BE分別平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE=()
∵DF、BE分別平分∠ADE、∠ABC,
∴∠ADF= ()
∠ABE= ()
∴∠ADF=∠ABE
∴∥()
∴∠FDE=∠DEB.()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(點(diǎn)E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用30元錢買筆記本和練習(xí)本共30本,已知每個筆記本4元,每個練習(xí)本4角,那么他最多能買筆記本( )本.
A.7 B.6 C.5 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊△ABC的邊BA上一動點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,你能發(fā)現(xiàn)AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;
(2)類比猜想:如圖②,當(dāng)動點(diǎn)D運(yùn)動至等邊△ABC邊BA的延長線時,其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?
(3)深入探究:Ⅰ.如圖③,當(dāng)動點(diǎn)D在等邊△ABC邊BA上運(yùn)動時(點(diǎn)D與B不重合),連接DC,以DC為邊在BC上方和下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′,探究AF,BF′與AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當(dāng)動點(diǎn)D在等邊△ABC的邊BA的延長線上運(yùn)動時,其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com