【題目】若菱形的周長為24cm,一個內(nèi)角為60°,則菱形的面積為( 。

A. 4cm2B. 9cm2C. 18cm2D. 36cm2

【答案】C

【解析】

由菱形的性質(zhì)和已知條件得出ABBCCDDA6cm,ACBD,由含30°角的直角三角形的性質(zhì)得出BOAB3cm,由勾股定理求出OA,可得BDAC的長度,由菱形的面積公式可求解.

如圖所示:

∵四邊形ABCD是菱形

ABBCCDDA,∠BAOBAD30°,ACBD,OAAC,BODO

∵菱形的周長為24cm

ABBCCDDA6cm

BOAB3cm

OA3cm

AC2OA6cmBD2BO6cm

∴菱形ABCD的面積=AC×BD18cm2

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在紙面上有一條數(shù)軸

操作一:

折疊數(shù)軸,使表示1的點與表示-1的點重合,則表示-5的點與表示 的點重合.

操作二:

折疊數(shù)軸,使表示1的點與表示3的點重合,在這個操作下回答下列問題:①表示-2的點與表示 的點重合;

②若數(shù)軸上A,B兩點的距離為7(AB的左側(cè)),且折疊后A,B兩點重合,則點A表示的數(shù)為 ,

B表示的數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,∠A=90°,AB=AC=+2,D是邊AC上的動點,BD的垂直平分線交BC于點E,連接DE,若CDE為直角三角形,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由一些大小相同,棱長為1的小正方體搭成的幾何體的俯視圖如圖所示,數(shù)字表示該位置的正方體個數(shù).

(1)請畫出它的主視圖和左視圖;

(2)給這個幾何體噴上顏色(底面不噴色),需要噴色的面積為

(3)在不改變主視圖和俯視圖的情況下,最多可添加 塊小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想要做以下的一個探究:小明準(zhǔn)備了一個長方體的無蓋容器和A,B兩種型號的鋼球若干. 先往容器里加入一定量的水,如圖,水高度為30mm,水足以淹沒所有的鋼球.探究一:小明做了兩次實驗,先放入3A型號鋼球,水面的高度漲到36mm;把3A型號鋼球撈出,再放入2B型號鋼球,水面的高度恰好也漲到36mm.由此可知A型號與B型號鋼球的體積比為____________;

探究二:小明把之前的鋼球全部撈出,然后再放入A型號與B型號鋼球共10個后,水面高度漲到57mm,問放入水中的A型號與B型號鋼球各幾個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某手機(jī)收費標(biāo)準(zhǔn)從甲地向乙地打長途電話,前3分鐘收費18元3分鐘后每分鐘加收費08元

1若通話時間為x分鐘x3),則應(yīng)收費多少元?

2若小王按此標(biāo)準(zhǔn)打一個電話花了82元,則這個電話小王打了幾分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年1月25日,濟(jì)南至成都方向的高鐵線路正式開通,高鐵平均時速為普快平均時速的4倍,從濟(jì)南到成都的高鐵運行時間比普快列車減少了26小時.已知濟(jì)南到成都的火車行車?yán)锍碳s為2288千米,求高鐵列車的平均時速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“十年樹木,百年樹人”,教師的素養(yǎng)關(guān)系到國家的未來.我市某區(qū)招聘音樂教師采用筆試、專業(yè)技能測試、說課三種形式進(jìn)行選拔,這三項的成績滿分均為100分,并按235的比例折合納入總分,最后,按照成績的排序從高到低依次錄。搮^(qū)要招聘2名音樂教師,通過筆試、專業(yè)技能測試篩選出前6名選手進(jìn)入說課環(huán)節(jié),這6名選手的各項成績見表:

序號

1

2

3

4

5

6

筆試成績

66

90

86

64

65

84

專業(yè)技能測試成績

95

92

93

80

88

92

說課成績

85

78

86

88

94

85

1)求出說課成績的中位數(shù)、眾數(shù);

2)已知序號為12,3,4號選手的成績分別為84.2分,84.6分,88.1分,80.8分,請你判斷這六位選手中序號是多少的選手將被錄用?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點E為BC邊的中點,點B′與點B關(guān)于AE對稱,B′B與AE交于點F,連接AB′,DB′,F(xiàn)C.下列結(jié)論:①AB′=AD;②△FCB′為等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正確的是( )

A. ①② B. ①②④ C. ③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案