如圖,在梯形ABCD中,ADBC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2cm的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),在線段AD上以每秒1cm的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)BA同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)t為何值時(shí),四邊形PQDC是平行四邊形.

(2)當(dāng)t為何值時(shí),以C,D,QP為頂點(diǎn)的梯形面積等于60cm2?

(3)是否存在點(diǎn)P,使△PQD是等腰三角形?若存在,請(qǐng)求出所有滿足要求的t的值,若

不存在,請(qǐng)說(shuō)明理由.

 


 (1)∵四邊形PQDC是平行四邊形

∴DQ=CP

∵DQ=AD-AQ=16-t,CP=21-2t

∴16-t=21-2t

 解得 t=5

當(dāng) t=5秒時(shí),四邊形PQDC是平行四邊形

   (2)若點(diǎn)P,Q在BC,AD上時(shí)

 
         即

        解得t=9(秒) 

        若點(diǎn)P在BC延長(zhǎng)線上時(shí),則CP=2t-21,

        解得 t=15(秒)

  ∴當(dāng)t=9或15秒時(shí),以C,D,Q,P為頂點(diǎn)的梯形面積等

 

(3)當(dāng)PQ=PD時(shí)

     作PH⊥AD于H,則HQ=HD

     ∵QH=HD=QD=(16-t)

     由AH=BP得 

     解得

     當(dāng)PQ=QD時(shí)  QH=AH-AQ=BP-AQ=2t-t=t, QD=16-t

   

 ∵QD2= PQ2=122+t2

∴(16--t)2=122+t2  解得(秒)

     當(dāng)QD=PD時(shí)  DH=AD -AH=AD-BP=16-2t

     ∵QD2=PD2=PH2+HD2=122+(16-2t)2

∴(16-t)2=122+(16-2t)2

即  3t2-32t+144=0

∵△<0

∴方程無(wú)實(shí)根

綜上可知,當(dāng)秒或(秒)時(shí), △BPQ是等腰三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案