分析 過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=ON=PN=3,證△APM≌△BPN,推出AM=BN,求出OA+OB=ON+OM,代入求出即可.
解答 解:過P作PM⊥y軸于M,PN⊥x軸于N,
∵P(5,5),
∴PN=PM=5,
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,
則四邊形MONP是正方形,
∴OM=ON=PN=PM=5,
∵∠APB=90°,
∴∠APB=∠MON,
∴∠MPA=90°-∠APN,∠BPN=90°-∠APN,
∴∠APM=∠BPN,
在△APM和△BPN中,
$\left\{\begin{array}{l}{∠APM=∠BPN}\\{PM=PN}\\{∠PMA=∠PNB}\end{array}\right.$,
∴△APM≌△BPN(ASA),
∴AM=BN,
∴OA+OB
=OA+0N+BN
=OA+ON+AM
=ON+OM
=5+5
=10.
故答案為:10.
點評 本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標與圖形性質(zhì),正方形的性質(zhì)的應用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -1 | D. | 1或-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com