分析 過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=ON=PN=3,證△APM≌△BPN,推出AM=BN,求出OA+OB=ON+OM,代入求出即可.
解答 解:過P作PM⊥y軸于M,PN⊥x軸于N,
∵P(5,5),
∴PN=PM=5,
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,
則四邊形MONP是正方形,
∴OM=ON=PN=PM=5,
∵∠APB=90°,
∴∠APB=∠MON,
∴∠MPA=90°-∠APN,∠BPN=90°-∠APN,
∴∠APM=∠BPN,
在△APM和△BPN中,
$\left\{\begin{array}{l}{∠APM=∠BPN}\\{PM=PN}\\{∠PMA=∠PNB}\end{array}\right.$,
∴△APM≌△BPN(ASA),
∴AM=BN,
∴OA+OB
=OA+0N+BN
=OA+ON+AM
=ON+OM
=5+5
=10.
故答案為:10.
點(diǎn)評(píng) 本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,3) | B. | (-4,3) | C. | (-4,-3) | D. | (4,-3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -1 | D. | 1或-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com