已知關于x的方程x2-(k+1)x+k=0.
(1)求證:無論k取什么實數(shù)值,這個方程總有實根.
(2)若等腰△ABC的一腰長a=4,另兩邊b、c恰好是這個方程的兩根,求△ABC的周長.

解:(1)∵△=[-(k+1)]2-4k=k2+2k+1-4k=(k-1)2≥0,
∴無論k取什么實數(shù)值,這個方程總有實根;

(2)∵等腰△ABC的一邊長a=4,
∴另兩邊b、c中必有一個數(shù)為4,
把4代入關于x的方程x2-(k+1)x+k=0中得,
∴16-4(k+1)+k=0,
解得:k=4,
所以b+c=k+1=5
∴△ABC的周長=4+5=9.
分析:(1)先把方程化為一般式:x2-(2k+1)x+4k-2=0,要證明無論k取任何實數(shù),方程總有兩個實數(shù)根,即要證明△≥0;
(2)若a=4為腰,則b,c中必有一個數(shù)為4,把4代入關于x的方程x2-(k+1)x+k=0中得到k的值,求出三角形的周長.
點評:此題主要考查了根的判別式,以及一元二次方程的解法,關鍵是正確確定b,c的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知關于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•西城區(qū)二模)已知關于x的方程x2+3x=8-m有兩個不相等的實數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-2(k+1)x+k2=0有兩個實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數(shù)值,方程總有實數(shù)根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案