【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.

【答案】
(1)

解:設(shè)拋物線的解析式為y=ax2+bx+c,

∵A(1,0)、B(0,3)、C(﹣4,0),

,

解得:a=﹣ ,b=﹣ ,c=3,

∴經(jīng)過A、B、C三點的拋物線的解析式為y=﹣ x2 x+3


(2)

解:在平面直角坐標系xOy中存在一點P,使得以點A、B、C、P為頂點的四邊形為菱形,理由為:

∵OB=3,OC=4,OA=1,

∴BC=AC=5,

當BP平行且等于AC時,四邊形ACBP為菱形,

∴BP=AC=5,且點P到x軸的距離等于OB,

∴點P的坐標為(5,3),

當點P在第二、三象限時,以點A、B、C、P為頂點的四邊形只能是平行四邊形,不是菱形,則當點P的坐標為(5,3)時,以點A、B、C、P為頂點的四邊形為菱形.


(3)

解:設(shè)直線PA的解析式為y=kx+b(k≠0),

∵A(1,0),P(5,3),

解得:k= ,b=﹣ ,

∴直線PA的解析式為y= x﹣ ,

當點M與點P、A不在同一直線上時,根據(jù)三角形的三邊關(guān)系|PM﹣AM|<PA,

當點M與點P、A在同一直線上時,|PM﹣AM|=PA,

∴當點M與點P、A在同一直線上時,|PM﹣AM|的值最大,即點M為直線PA與拋物線的交點,

解方程組 ,得 ,

∴點M的坐標為(1,0)或(﹣5,﹣ )時,|PM﹣AM|的值最大,此時|PM﹣AM|的最大值為5.


【解析】(1)設(shè)拋物線的解析式為y=ax2+bx+c,把A,B,C三點坐標代入求出a,b,c的值,即可確定出所求拋物線解析式;
   。2)在平面直角坐標系xOy中存在一點P,使得以點A、B、C、P為頂點的四邊形為菱形,理由為:根據(jù)OA,OB,OC的長,利用勾股定理求出BC與AC的長相等,只有當BP與AC平行且相等時,四邊形ACBP為菱形,可得出BP的長,由OB的長確定出P的縱坐標,確定出P坐標,當點P在第二、三象限時,以點A、B、C、P為頂點的四邊形只能是平行四邊形,不是菱形;
    (3)利用待定系數(shù)法確定出直線PA解析式,當點M與點P、A不在同一直線上時,根據(jù)三角形的三邊關(guān)系|PM﹣AM|<PA,當點M與點P、A在同一直線上時,|PM﹣AM|=PA,
當點M與點P、A在同一直線上時,|PM﹣AM|的值最大,即點M為直線PA與拋物線的交點,聯(lián)立直線AP與拋物線解析式,求出當|PM﹣AM|的最大值時M坐標,確定出|PM﹣AM|的最大值即可.此題屬于二次函數(shù)綜合題,涉及的知識有:二次函數(shù)的性質(zhì),待定系數(shù)法確定拋物線解析式、一次函數(shù)解析式,菱形的判定,以及坐標與圖形性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】湖州某企業(yè)新增了一個化工項目,為了節(jié)約資源,保護環(huán)境,該企業(yè)決定購買A、B兩種型號的污水處理設(shè)備共10臺,具體情況如下表:

A

B

價格(萬元/臺)

15

12

月污水處理能力(噸/月)

250

200

經(jīng)預算,企業(yè)最多支出136萬元購買設(shè)備,且要求月處理污水能力不低于2150噸.

(1)該企業(yè)有哪幾種購買方案?

(2)哪種方案更省錢?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為原點,點A的坐標為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達式.
(2)若α為銳角,tanα= ,當AE取得最小值時,求正方形OEFG的面積.
(3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為 :1?若能,求點P的坐標;若不能,試說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點,且B(1,0)
(1)求拋物線的解析式和點A的坐標;
(2)如圖1,點P是直線y=x上的動點,當直線y=x平分∠APB時,求點P的坐標;
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點,點Q是直線CF下方的拋物線上的一個動點,過點Q作y軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.
(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,﹣3),動點P在拋物線上.

(1)b= , c= , 點B的坐標為;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(A在B的左側(cè)),與y軸交于點C(0,3),已知對稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點P是拋物線L上任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,CD.

(1)求點C,D的坐標及平行四邊形ABDC的面積.

(2)在y軸上是否存在一點P,連接PA,PB,使=2,若存在這樣一點,求出點P的坐標,若不存在,試說明理由.

(3)點P是四邊形ABCD邊上的點,若△OPC為等腰三角形時,直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案