問題提出:用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗(yàn)、觀察、類比,最后歸納、猜測(cè)得出結(jié)論.
探究一:
(1)用3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
此時(shí),顯然能搭成一種等腰三角形。所以,當(dāng)時(shí),
(2)用4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當(dāng)時(shí),
(3)用5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當(dāng)時(shí),
(4)用6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當(dāng)時(shí),
綜上所述,可得表①
| 3 | 4 | 5 | 6 |
| 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表②中)
(2) 分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?
(只需把結(jié)果填在表②中)
| 7 | 8 | 9 | 10 |
|
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……
解決問題:用根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?
(設(shè)分別等于、、、,其中是整數(shù),把結(jié)果填在表③中)
|
|
|
|
|
|
問題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?
(要求寫出解答過程)
其中面積最大的等腰三角形每個(gè)腰用了__________________根木棒。(只填結(jié)果)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
| 2 | 4% |
| 12 | 24% |
| ||
| 10 | 20% |
| 12% | |
| 3 | 6% |
| 2 | 4% |
(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請(qǐng)你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在,這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),求抽取出的2個(gè)家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,平面直角坐標(biāo)系的原點(diǎn)O是正方形ABCD的中心,頂點(diǎn)A,B的坐標(biāo)分別為(1,1)、(-1,1),
把正方形ABCD繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°得到正方形A'B'C'D'則正方形ABCD與正方形A'B'C'D' 重疊部分形成的正八邊形的邊長(zhǎng)為_____________________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小穎和小麗做“摸球”游戲:在一個(gè)不透明的袋子中裝有編號(hào)為1~4的四個(gè)球(除編號(hào)外都相同),從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再?gòu)闹忻鲆粋(gè)球,記下數(shù)字。若兩次數(shù)字之和大于5,則小穎勝,否則小麗勝。這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在端午節(jié)道來之前,學(xué)校食堂推薦了A,B,C三家粽子專賣店,對(duì)全校師生愛吃哪家店的粽子作調(diào)查,以決定最終向哪家店采購(gòu). 下面的統(tǒng)計(jì)量中,最值得關(guān)注的是【 】
A. 方差 B. 平均數(shù) C. 中位數(shù) D. 眾數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
二次函數(shù)的圖象在2<<3這一段位于軸的下方,在6<<7這一段位于軸的上方,則的值為【 】
A. 1 B. -1 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過點(diǎn)D作DE⊥DC,交OA于點(diǎn)E.
(1)求過點(diǎn)E、D、C的拋物線的解析式;
(2)將∠EDC繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G.如果EF=2OG,求點(diǎn)G的坐標(biāo).
(3)對(duì)于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQ與AB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com