【題目】如圖所示,以Rt△ABC的三邊分別為直徑作半圓,若Rt△ABC三邊長分別為3,x,5,則圖中陰影部分的面積為___________.
【答案】6或.
【解析】
先分兩種情況求出x的值,再分別求出三個半圓的面積,三角形ABC的面積,陰影部分的面積是三角形ABC的面積加上以AC為直徑和以BC為直徑的兩個半圓的面積再減去以AB為直徑的半圓的面積.
當(dāng)x為直角邊長時,32+x2=52,解得,x=4(負值舍去);
當(dāng)x為斜邊長時,32+52=x2,解得,x= (負值舍去).
當(dāng)x=4時,以AC為直徑的半圓的面積:π×(3÷2)2×=π,
以BC為直徑的半圓的面積:π×(4÷2)2×=2π,
以AB為直徑的半圓的面積:π×(5÷2)2×=π
三角形ABC的面積:3×4×=6,
陰影部分的面積:6+π+2π-π=6;
當(dāng)x=時,以AC為直徑的半圓的面積:π×(3÷2)2×=π,
以BC為直徑的半圓的面積:π×(5÷2)2×=π
以AB為直徑的半圓的面積:π×(÷2)2×=2π,
三角形ABC的面積:3×5×=,
陰影部分的面積:+π+π-π=.
故答案為:6或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以長為一邊作,,取中點,連、、.
求證:
當(dāng)________時,是等邊三角形,并說明理由.
當(dāng)時,若,取中點,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+4x+5與x軸的兩個交點為A、B,與y軸交于點C.
(1)求A,B,C三點的坐標(biāo)?
(2)求該二次函數(shù)的對稱軸和頂點坐標(biāo)?
(3)若坐標(biāo)平面內(nèi)的點M,使得以點M和三點A,B,C為頂點的四邊形是平行四邊形,求點M的坐標(biāo)?(直接寫出M的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標(biāo)為(﹣1,0),與y軸的交點坐標(biāo)為(0,3).
(1)求出b、c的值,并寫出此二次函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍;
(3)當(dāng)2≤x≤4時,求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點P的坐標(biāo);
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當(dāng)以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為3cm,圓心角為60°的扇形紙片.AOB在直線l上向右作無滑動的滾動至扇形A′O′B′處,則頂點O經(jīng)過的路線總長 cm(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(4,0),且當(dāng)x=﹣2和x=5時二次函數(shù)的函數(shù)值y相等.
(1)求實數(shù)a、b的值;
(2)如圖1,動點E、F同時從A點出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒 個單位長度的速度沿射線AC方向運動.當(dāng)點E停止運動時,點F隨之停止運動.設(shè)運動時間為t秒.連接EF,將△AEF沿EF翻折,使點A落在點D處,得到△DEF.
①是否存在某一時刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由.
②設(shè)△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1: .
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com