(2006•河南)如圖,在△ABC中,AC=BC=2,∠ACB=90°,D是BC邊的中點,E是AB邊上一動點,則EC+ED的最小值是   
【答案】分析:首先確定DC′=DE+EC′=DE+CE的值最小.然后根據勾股定理計算.
解答:解:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于E,連接CE,
此時DE+CE=DE+EC′=DC′的值最。
連接BC′,由對稱性可知∠C′BE=∠CBE=45°,
∴∠CBC′=90°,
∴BC′⊥BC,∠BCC′=∠BC′C=45°,
∴BC=BC′=2,
∵D是BC邊的中點,
∴BD=1,
根據勾股定理可得DC′==
故答案為:
點評:此題考查了線路最短的問題,確定動點E何位置時,使EC+ED的值最小是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•河南)如圖,∠AOB=45°,過OA上到點O的距離分別為1,2,3,4,5 …的點作OA的垂線與OB相交,再按一定規(guī)律標出一組如圖所示的黑色梯形.設前n個黑色梯形的面積和為Sn
n 1 2 3 …
 Sn    …
(1)請完成上面的表格;
(2)已知Sn與n之間滿足一個二次函數(shù)關系,試求出這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年河南省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•河南)如圖,∠AOB=45°,過OA上到點O的距離分別為1,2,3,4,5 …的點作OA的垂線與OB相交,再按一定規(guī)律標出一組如圖所示的黑色梯形.設前n個黑色梯形的面積和為Sn
n 1 2 3 …
 Sn    …
(1)請完成上面的表格;
(2)已知Sn與n之間滿足一個二次函數(shù)關系,試求出這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年河南省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•河南)如圖,在平面直角坐標系中,直線y=-x+4分別交x軸、y軸于A、B兩點.
(1)求兩點的坐標;
(2)設是直線AB上一動點(點P與點A不重合),設⊙P始終和x軸相切,和直線AB相交于C、D兩點(點C的橫坐標小于點D的橫坐標)設P點的橫坐標為m,試用含有m的代數(shù)式表示點C的橫坐標;
(3)在(2)的條件下,若點C在線段AB上,求m為何值時,△BOC為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年河南省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•河南)如圖△ABC中,∠ACB=90度,AC=2,BC=3.D是BC邊上一點,直線DE⊥BC于D,交AB于點E,CF∥AB交直線DE于F.設CD=x.
(1)當x取何值時,四邊形EACF是菱形?請說明理由;
(2)當x取何值時,四邊形EACD的面積等于2?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年河南省中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•河南)如圖(1),用形狀相同、大小不等的三塊直角三角形木板,恰好能拼成如圖(2)所示的四邊形ABCD、若AE=4,CE=3BE,那么這個四邊形的面積是   

查看答案和解析>>

同步練習冊答案