【題目】如圖①,AB是⊙O的直徑,且AB10,C是⊙O上的動點(diǎn),AC是弦,直線EF和⊙O相切于點(diǎn)C,ADEF,垂足為D.(1)求證:∠DACBAC;

(2)AD和⊙O相切于點(diǎn)A,求AD的長;

(3)若把直線EF向上平行移動,如圖②,EF交⊙OG,C兩點(diǎn),題中的其他條件不變,試問這時(shí)與∠DAC相等的角是否存在,并說明理由.

【答案】(1)詳見解析;(2)5;(3)存在,∠BAGDAC,理由詳見解析.

【解析】試題分析

(1)連接OC,則OC∥AD,得∠OCA=∠DAC,又∠OCA=∠OAC,即可證明;

(2)根據(jù)切線長定理,證明矩形OADC是正方形;

(3)連接BC,證∠BCG=∠DAC,又∠BCG=∠BAG,即得證.

試題解析

(1)證明:如圖①,連接OC.∵直線EF和⊙O相切于點(diǎn)C,

∴OC⊥EF.∵AD⊥EF,∴OC∥AD.∴∠DAC=∠OCA.

∵OA=OC,∴∠BAC=∠OCA.∴∠DAC=∠BAC.

(2)解:∵AD和⊙O相切于點(diǎn)A,∴OA⊥AD.∵AD⊥EF,OC⊥EF,

∴∠OAD=∠ADC=∠OCD=90°.∴四邊形OADC是矩形.∵OA=OC,

∴矩形OADC是正方形.∴AD=OA.∵AB=2OA=10,∴AD=OA=5.

(3)解:存在,∠BAG=∠DAC.理由如下:如圖,連接BC.∵AB是⊙O的直徑,

∴∠BCA=90°.∴∠ACD+∠BCG=90°.∵∠ADC=90°,

∴∠ACD+∠DAC=90°.∴∠DAC=∠BCG.∵∠BCG=∠BAG,∴∠BAG=∠DAC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正多邊形每一個(gè)內(nèi)角都等于120°,則從此多邊形一個(gè)頂點(diǎn)出發(fā)可引的對角線的條數(shù)是(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射擊運(yùn)動員在某次訓(xùn)練中各射擊10發(fā)子彈,成績?nèi)缦卤?/span>:

8

9

7

9

8

6

7

8

10

8

6

7

9

7

9

10

8

7

7

10

=8, =1.8.根據(jù)上述信息完成下列問題:

(1)將甲運(yùn)動員的折線統(tǒng)計(jì)圖補(bǔ)充完整.

(2)求乙運(yùn)動員射擊訓(xùn)練成績的眾數(shù)和中位數(shù).

(3)求甲運(yùn)動員射擊成績的平均數(shù)和方差,并判斷甲、乙兩人本次射擊成績的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計(jì)概率的試驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是(  )

A. 石頭、剪刀、布的游戲中小明隨機(jī)出的是剪刀

B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C. 暗箱中有1個(gè)紅球和2個(gè)黃球它們只有顏色上的區(qū)別,從中任取一球是黃球

D. 擲一個(gè)質(zhì)地均勻的正六面體骰子向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;

2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo);

(3)在(2)的條件下,求出△AOB的面積;

(4)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=mx2-(m+5)x+5.

(1)求證:它的圖象與x軸必有交點(diǎn),且過x軸上一定點(diǎn);

(2)這條拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,0),0<x1<x2,(1) 中定點(diǎn)的直線L;y=x+ky軸于點(diǎn)D,AB=4,圓心在直線L上的⊙MA、B兩點(diǎn),求拋物線和直線的關(guān)系式,AB與弧圍成的弓形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】珍重生命,注意安全!同學(xué)們在上下學(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時(shí),想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:

1)小明家到學(xué)校的路程是多少米?

2)小明在書店停留了多少分鐘?

3)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?

4)我們認(rèn)為騎單車的速度超過300/分鐘就超越了安全限度.問:在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,速度在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù) ()的圖像與反比例函數(shù) ()的圖像交于點(diǎn)且點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)的坐標(biāo)為

(1)求正比例函數(shù)的解析式;

(2)若為射線上一點(diǎn),①若點(diǎn)的橫坐標(biāo)為, 的面積為,寫出關(guān)于的函數(shù)解析式,并指出自變量的取值范圍;②當(dāng)是等腰三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長線上一點(diǎn),N∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME

正方形ABCD中,∠B=∠BCD=90°,AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面請你完成余下的證明過程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.

3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

1 2

查看答案和解析>>

同步練習(xí)冊答案