【題目】如圖,四邊形ABCD是正方形,點(diǎn)E,F(xiàn)分別在BC,AB上,點(diǎn)M在BA的延長(zhǎng)線上,且CE=BF=AM,過點(diǎn)M,E分別作NM⊥DM,NE⊥DE交于N,連接NF.
(1)求證:DE⊥DM;
(2)猜想并寫出四邊形CENF是怎樣的特殊四邊形,并證明你的猜想.
【答案】(1)證明見解析;
(2)四邊形CENF是平行四邊形,理由見解析.
【解析】(1)證明:∵四邊形ABCD是正方形,
∴DC=DA,∠DCE=∠DAM=90°,
在△DCE和△MDA中,,
∴△DCE≌△MDA(SAS),
∴DE=DM,∠EDC=∠MDA.
又∵∠ADE+∠EDC=∠ADC=90°,
∴∠ADE+∠MDA=90°,
∴DE⊥DM;
(2)解:四邊形CENF是平行四邊形,理由如下:
∵四邊形ABCD是正方形,
∴AB∥CD,AB=CD.
∵BF=AM,
∴MF=AF+AM=AF+BF=AB,
即MF=CD,
又∵F在AB上,點(diǎn)M在BA的延長(zhǎng)線上,
∴MF∥CD,
∴四邊形CFMD是平行四邊形,
∴DM=CF,DM∥CF,
∵NM⊥DM,NE⊥DE,DE⊥DM,
∴四邊形DENM都是矩形,
∴EN=DM,EN∥DM,
∴CF=EN,CF∥EN,
∴四邊形CENF為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).
(1)直接寫出A、B兩點(diǎn)的坐標(biāo).
(2)當(dāng)△APQ與△AOB相似時(shí),求t的值.
(3)設(shè)△APQ的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)E、F分別在直線AB、CD上,點(diǎn)G、H在兩直線之間,線段EF與GH相交于點(diǎn)O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,則在圖中相等的角共有( 。
A. 5對(duì)B. 6對(duì)C. 7對(duì)D. 8對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在講完乘法公式的多種運(yùn)用后,要求同學(xué)們運(yùn)用所學(xué)知識(shí)解答:求代數(shù)式的最小值?同學(xué)們經(jīng)過交流、討論,最后總結(jié)出如下解答方法:
解:
∵,
當(dāng)時(shí),的值最小,最小值是0,
∴
當(dāng)時(shí),的值最小,最小值是1,
∴的最小值是1.
請(qǐng)你根據(jù)上述方法,解答下列各題
(1)當(dāng)x=______時(shí),代數(shù)式的最小值是______;
(2)若,當(dāng)x=______時(shí),y有最______值(填“大”或“小”),這個(gè)值是______;
(3)若,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購買、兩種型號(hào)的污水處理設(shè)備共10臺(tái),用于同時(shí)治理不同成分的污水,若購買型6臺(tái),型4臺(tái)需112萬,購買型4臺(tái),型6臺(tái)則需108萬元.
(1)求出型、型污水處理設(shè)備的單價(jià);
(2)經(jīng)了解,一臺(tái)型設(shè)備每月可處理污水220噸,一臺(tái)型設(shè)備每月可處理污水190噸,如果該企業(yè)計(jì)劃用不超過106萬元的資金購買這兩種設(shè)備,而且使這兩種設(shè)備每月的污水處理量不低于2005噸,請(qǐng)通過計(jì)算說明這種方案是否可行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=2.
(1)分別求出該反比例函數(shù)和直線AB的解析式;
(2)求出交點(diǎn)D坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC為米,斜坡BC的坡度i=1: .小明在山腳的平地F處測(cè)量旗桿的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)六邊形的花壇被分割成7個(gè)部分,其中四邊形PRBA,RQDC,QPFE為正方形。記正方形PRBA,RQDC,QPFE的面積分別為,,, RH⊥PQ,垂足為H。
(1)若PR⊥QR,=16,=9,則= ,RH= ;
(2)若四邊形PRBA,RQDC,QPFE的面積分別為25m2、13m2、36m2
①求△PRQ的面積;
②請(qǐng)判斷△PRQ和△DEQ的面積的數(shù)量關(guān)系,并證明你的結(jié)論;
③六邊形花壇ABCDEF的面積是 m2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com