用一段長(zhǎng)為30m的籬笆圍成一個(gè)一邊靠墻的矩形養(yǎng)雞場(chǎng),若墻長(zhǎng)18m,這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),養(yǎng)雞場(chǎng)的面積最大?最大面積是多少?
設(shè)養(yǎng)雞場(chǎng)寬為x,則長(zhǎng)為30-2x,
根據(jù)題意,y=x(30-2x),
y=-2(x-
15
2
)
2
+
225
2
,
當(dāng)x=
15
2
時(shí),y有最大值為
225
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ADBC,BA=CD,AD的長(zhǎng)為4,S梯形ABCD=9.已知點(diǎn)A、B的坐標(biāo)分別為(1,0)和(0,3).
(1)求點(diǎn)C的坐標(biāo);
(2)取點(diǎn)E(0,1),連接DE并延長(zhǎng)交AB于P試猜想DF與AB之間的關(guān)系,并證明你的結(jié)論;
(3)將梯形ABCD繞點(diǎn)A旋轉(zhuǎn)180°后成梯形AB′C′D′,求對(duì)稱軸為直線x=3,且過A、B′兩點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.若把拱橋的截面圖放在平面直角坐標(biāo)系中,則兩盞景觀燈之間的水平距離是( 。
A.3mB.4mC.5mD.6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=-2x2-4x+1在自變量-2≤x≤1的取值范圍內(nèi),下列說法正確的是( 。
A.最大值為3B.最大值為1C.最小值為1D.最小值為0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1經(jīng)過拋物線上一點(diǎn)B(-2,m),且與y軸、直線x=2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點(diǎn);
(3)若P(x,y)是該拋物線上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得PB=PE?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)長(zhǎng)方形的周長(zhǎng)是8cm,一邊長(zhǎng)是xcm,則這個(gè)長(zhǎng)方形的面積y與邊長(zhǎng)x的函數(shù)關(guān)系用圖象表示為( 。
A.B.C.≈D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

蔬菜基地種植某種蔬菜,由市場(chǎng)行情分析知,1月份至6月份這種蔬菜的上市時(shí)間x(月份)與市場(chǎng)售價(jià)p(元/千克)的關(guān)系如下表:
上市時(shí)間x(月份)123456
市場(chǎng)售價(jià)p(元/千克)10.597.564.53
這種蔬菜每千克的種植成本y(元/千克)與上市時(shí)間x(月份)滿足一個(gè)函數(shù)關(guān)系,這個(gè)函數(shù)的圖象是拋物線的一段(如圖).

(1)寫出上表中表示的市場(chǎng)售價(jià)p(元/千克)關(guān)于上市時(shí)間x(月份)的函數(shù)關(guān)系式______;
(2)若圖中拋物線過A,B,C點(diǎn),寫出拋物線對(duì)應(yīng)的函數(shù)關(guān)系式______;
(3)由以上信息分析,______月份上市出售這種蔬菜每千克的收益最大,最大值為______元(收益=市場(chǎng)售價(jià)一種植成本).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點(diǎn)A在y軸的正方向上,A(0,6),D(4,6),且AB=2
10

(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過B、D兩點(diǎn)的拋物線y=ax2+bx+6的解析式;
(3)在(2)中所求的拋物線上是否存在一點(diǎn)P,使得S△PBC=
1
2
S梯形ABCD
?若存在,請(qǐng)求出該點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對(duì)稱軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案