【題目】如圖,在RtABC中,∠BAC90°,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到AB′C′(點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)C′),連接CC′.若∠CC′B′32°,則∠B的大小是(

A.32°B.64°C.77°D.87°

【答案】C

【解析】

旋轉(zhuǎn)中心為點(diǎn)A,C、C′為對應(yīng)點(diǎn),可知ACAC′,又因?yàn)椤?/span>CAC′90°,根據(jù)三角形外角的性質(zhì)求出∠C′B′A的度數(shù),進(jìn)而求出∠B的度數(shù).

解:由旋轉(zhuǎn)的性質(zhì)可知,ACAC′,

∵∠CAC′90°,可知△CAC′為等腰直角三角形,則∠CC′A45°

∵∠CC′B′32°

∴∠C′B′A=∠C′CA+CC′B′45°+32°77°,

∵∠B=∠C′B′A,

∴∠B77°,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到ABC,MBC的中點(diǎn),PA'B的中點(diǎn),連接PM,若BC4,AC3,則在旋轉(zhuǎn)的過程中,線段PM的長度不可能是( 。

A.5B.4.5C.2.5D.0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一枚六個(gè)面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個(gè)正面朝上的編號分別為m,n,則二次函數(shù)的圖象與x軸有兩個(gè)不同交點(diǎn)的概率是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(3,0),頂點(diǎn)B在y軸正半軸上,頂點(diǎn)D在x軸負(fù)半軸上.若拋物線y=-x2-5x+c經(jīng)過點(diǎn)B、C,則菱形ABCD的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖EDBABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)而來,D點(diǎn)落在AC上,DEAB于點(diǎn)F,AB=ACDB=BF,則AFBF的比值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù),其中.

(1)若點(diǎn)y1的圖象上.a的值:

(2)當(dāng)時(shí).若函數(shù)有最大值2.y1的函數(shù)表達(dá)式;

(3)對于一次函數(shù),其中,若對- -切實(shí)數(shù)x, 都成立,求a,m需滿足的數(shù)量關(guān)系及 a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(b,0),C(b,-2a).且+|b-l|=0.CDAB,ADBC

(1)直接寫出B、C、D各點(diǎn)的坐標(biāo):B 、C 、D ;

(2)如圖1,P(3,10),點(diǎn)E,M在四邊形ABCD的邊上,且E在第二象限.若PEM是以PE為直角邊的等腰直角三角形,請直接寫出點(diǎn)E的坐標(biāo),并對其中一種情況計(jì)算說明;

(3)如圖2,F(xiàn)y軸正半軸上一動點(diǎn),過F的直線jx軸,BH平分∠FBA交直線j于點(diǎn)H.GBF上的點(diǎn),且∠HGF=FAB,F(xiàn)在運(yùn)動中FG的長度是否發(fā)生變化?若變化,求出變化范圍;若不變,求出定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E,F分別在BCCD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______

查看答案和解析>>

同步練習(xí)冊答案