【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為,投人市場(chǎng)銷售時(shí),調(diào)査市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量 (單位:千克)與銷售單價(jià) (單位: )之間的函數(shù)關(guān)系如圖
(1)求與的函數(shù)解析式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蜜柚?請(qǐng)說(shuō)明理由
【答案】(1) ,(2)定價(jià)為19元時(shí),利潤(rùn)最大,最大利潤(rùn)是1210元 (3)不能銷售完這批蜜柚.
【解析】
(1)利用待定系數(shù)法求解可得;
(2)根據(jù)“總利潤(rùn)=單件利潤(rùn)×銷售量”列出函數(shù)解析式,并配方成頂點(diǎn)式即可得出最大值;
(3)求出在(2)中情況下,即x=19時(shí)的銷售量,據(jù)此求得40天的總銷售量,比較即可得出答案.
(1)設(shè)與的函數(shù)解析式為
將(10,200)、(15,150)代入,則,
解得
∴
∵蜜柚銷售不會(huì)虧本,
∴
又∵,
∴,
∴
∴
(2)設(shè)利潤(rùn)為元, 則w=(x-8)y
=(x-8)(-10x+300)
=-10(x-19)2+1210,
∵8≤x≤30,
∴當(dāng)x=19時(shí),w取得最大值,最大值為1210;
即,定價(jià)為19元時(shí),利潤(rùn)最大,最大利潤(rùn)是1210元;
(3) 由(2)知,當(dāng)獲得最大利潤(rùn)時(shí),定價(jià)為19元/千克,
則每天的銷售量為y=-10×19+300=110千克,
∵保質(zhì)期為40天,
∴總銷售量為40×110=4400,
又∵4400<4800,
∴不能銷售完這批蜜柚.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為向明中學(xué)提供午餐的某送餐公司計(jì)劃每月最后一天推出學(xué)生“驚喜套餐”,現(xiàn)做出幾款套餐后打算每班邀請(qǐng)一位學(xué)生代表來(lái)品嘗.初三(6)班有44人(學(xué)號(hào)從1~44號(hào)),班長(zhǎng)設(shè)計(jì)了一個(gè)推選本班代表的辦法:從一副撲克牌中選取了分別標(biāo)有數(shù)字1、2、3、4的四張牌.先抽取一張牌記下數(shù)字后,放回洗勻;再抽取一張牌記下數(shù)字,兩個(gè)數(shù)字依次組成學(xué)生代表的學(xué)號(hào).比如第一張抽到1,第二張抽到4,就是學(xué)號(hào)為14的這個(gè)同學(xué)作為本班代表.
(1)如果小林的學(xué)號(hào)為23,請(qǐng)用列表法或畫(huà)出樹(shù)狀圖的方法,求出他被抽到的概率;
(2)對(duì)初三(6)班的每位同學(xué)來(lái)說(shuō),班長(zhǎng)設(shè)計(jì)的辦法是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某學(xué)校旗桿AB旁邊有一個(gè)半側(cè)的時(shí)鐘模型,時(shí)鐘的9點(diǎn)和3點(diǎn)的刻度線剛好和地面重合,半圓的半徑2m,旗桿的底端A到鐘面9點(diǎn)刻度C的距離為11m,一天小明觀察到陽(yáng)光下旗桿頂端B的影子剛好投到時(shí)鐘的11點(diǎn)的刻度上,同時(shí)測(cè)得1米長(zhǎng)的標(biāo)桿的影長(zhǎng)1.2m.求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,直線l是拋物線的對(duì)稱軸,D是拋物線的頂點(diǎn).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)如圖1,連結(jié)BD,線段OC上點(diǎn)E關(guān)于直線l的對(duì)稱點(diǎn)E'恰好在線段BD上,求點(diǎn)E的坐標(biāo);
(3)如圖2,點(diǎn)P是直線BC上方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線分別與BC交于點(diǎn)M,與x軸交于點(diǎn)N.試問(wèn):拋物線上是否存在點(diǎn)Q,使得△PQN與△AMN的面積相等,且線段PQ的長(zhǎng)度最?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,工匠師傅在板材邊角處作直角時(shí),往往使用“三弧法”,作法如下:
(1)作線段,分別以為圓心,以長(zhǎng)為半徑作弧,兩弧的交點(diǎn)為;
(2)以為圓心,仍以長(zhǎng)為半徑作弧交的延長(zhǎng)線于點(diǎn)
(3)連接下列說(shuō)法中,不正確的是( )
A.是正三角形B.點(diǎn)是的外心
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,點(diǎn)為射線上一個(gè)動(dòng)點(diǎn),連接,將沿折疊,點(diǎn)落在點(diǎn)處,過(guò)點(diǎn)作的垂線,分別交于點(diǎn)當(dāng)點(diǎn)為線段的三等分點(diǎn)時(shí),的長(zhǎng)為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,雙曲線經(jīng)過(guò)點(diǎn).
(1)求直線和雙曲線的解析式.
(2)平移直線,使它與雙曲線有唯一公共點(diǎn)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,,,斜邊,是的中點(diǎn),以為圓心,線段的長(zhǎng)為半徑畫(huà)圓心角為的扇形,弧經(jīng)過(guò)點(diǎn),則圖中陰影部分的面積為_______平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某社區(qū)工作人員在社區(qū)隨機(jī)抽取了若干名居民開(kāi)展環(huán)保知識(shí)有獎(jiǎng)問(wèn)答活動(dòng),并用得到的數(shù)據(jù)繪制了如圖所示條形統(tǒng)計(jì)圖(得分為整數(shù),滿分為10分,最低分為6分).
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)本次調(diào)查一共抽取了__________名居民;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù);并直接寫出樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(3)社區(qū)決定對(duì)該小區(qū)500名居民開(kāi)展這項(xiàng)有獎(jiǎng)問(wèn)答活動(dòng),得10分者設(shè)為“一等獎(jiǎng)”.根據(jù)調(diào)查結(jié)果,請(qǐng)你幫社區(qū)工作人員直接估計(jì)出需準(zhǔn)備多少份“一等獎(jiǎng)”獎(jiǎng)品.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com