解答:解:(1)由題意知,拋物線的對(duì)稱軸為:x=-1,
已知A(-3,0),
故B(1,0).
(2)①∵點(diǎn)B(1,0),C(0,3)在拋物線上,拋物線與y軸交于點(diǎn)C(0,3);
∴
,
解得
,
∴拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-(x+1)
2+4;
∴M(-1,4)設(shè)直線MC所對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,
∴
,
解得
,
∴直線MC所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-x+3;
②假設(shè)在拋物線上存在異于點(diǎn)C的點(diǎn)P,使得△NPC是以NC為直角邊的直角三角形.
1)若PN為△NPC的另一條直角邊,如圖1;
易得直線MC與x軸的交點(diǎn)坐標(biāo)為N(3,0),
∵OC=ON,
∴∠CNO=45°,
在y軸上取點(diǎn)D(0,-3),連接ND交拋物線于點(diǎn)P,
∵ON=OD,
∴∠DNO=45°,
∴∠PNC=90°.
設(shè)直線ND的函數(shù)表達(dá)式為y=mx+n;
可得
,
解得
∴直線ND的函數(shù)表達(dá)式為y=x-3;
設(shè)點(diǎn)P(x,x-3),并將它代入拋物線的函數(shù)表達(dá)式,得x-3=-(x+1)
2+4,
即x
2+3x-6=0,
解得
x1=,
x2=,
∴
y1=,
y2=;
∴滿足條件的點(diǎn)為
P1(,
),
P2(,
).
2)若PC是另一條直角邊,如圖2;
∵點(diǎn)A是拋物線與x軸的另一交點(diǎn),
∴點(diǎn)A的坐標(biāo)為(-3,0);
連接AC;
∵OA=OC,
∴∠OCA=45°,
又∵∠OCN=45°,
∴∠ACN=90°,
∴點(diǎn)A就是所求的點(diǎn)P
3(-3,0);
第二種解法:求出直線AC的函數(shù)表達(dá)式為y=x+3;
設(shè)點(diǎn)P(x,x+3),代入拋物線的函數(shù)表達(dá)式,
得x+3=-(x+1)
2+4,
即x
2+3x=0;
解得x
1=-3,x
2=0;
∴y
1=0,y
2=3,
∴點(diǎn)P
3(-3,0),P
4(0,3)(舍去).]
綜上可知,在拋物線上存在滿足條件的點(diǎn)有3個(gè),分別
P1(,
),
P2(,
),P
3(-3,0).