(2013•廣陽(yáng)區(qū)一模)如圖,直線y=2x-6與x軸交于點(diǎn)A,與y軸交與點(diǎn)B,M是線段AB上一點(diǎn),BM=2AM,反比例函數(shù)圖象經(jīng)過(guò)點(diǎn)M,
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求反比例函數(shù)解析式;
(3)已知點(diǎn)M′與點(diǎn)M關(guān)于原點(diǎn)對(duì)稱,則△ABM′的面積為
18
18
分析:(1)分別把x=0和y=0代入y=-2x-6可確定A點(diǎn)坐標(biāo)為(-3,0),B點(diǎn)坐標(biāo)為(0,-6);
(2)過(guò)點(diǎn)M作MN⊥y軸于N,利用△BMN∽△BAO得到
BM
BA
=
MN
OA
,由于BM=2AM,OA=3可解得MN=2,然后利用M點(diǎn)在y=-2x-6可確定M點(diǎn)坐標(biāo);再利用待定系數(shù)法確定反比例函數(shù)的解析式;
(3)根據(jù)點(diǎn)關(guān)于原點(diǎn)對(duì)稱的特點(diǎn)得到點(diǎn)M′的坐標(biāo)為(2,2),再利用待定系數(shù)法確定直線BM′的解析式為y=4x-6,再確定C點(diǎn)坐標(biāo)為(
3
2
,0),然后利用S△ABM′=S△BAC+S△M′AC
進(jìn)行計(jì)算.
解答:解:(1)當(dāng)x=0,y=-2x-6=-6;當(dāng)y=0,-2x-6=0,解得x=-3,
∴A點(diǎn)坐標(biāo)為(-3,0),B點(diǎn)坐標(biāo)為(0,-6);

(2)過(guò)點(diǎn)M作MN⊥y軸于N,如圖
∴△BMN∽△BAO,
BM
BA
=
MN
OA

∵BM=2AM,
∴AB=
2
3
BM,
而OA=3,
MN
3
=
2
3
,解得MN=2,
∴M點(diǎn)的橫坐標(biāo)為-2,
把x=-2代入y=-2x-6得y=4-6=-2,
∴M點(diǎn)坐標(biāo)為(-2,-2),
設(shè)反比例函數(shù)解析式為y=
k
x

把M(-2,-2)代入y=
k
x
得k=-2×(-2)=4,
∴反比例函數(shù)的解析式為y=
4
x


(3)直線BM′交x軸于C點(diǎn),如圖,
∵點(diǎn)M′與點(diǎn)M關(guān)于原點(diǎn)對(duì)稱,
∴點(diǎn)M′的坐標(biāo)為(2,2),
設(shè)直線BM′的解析式為y=ax+b,
把B(0,-6)和M′(2,2)代入得
b=-6
2a+b=2
,
解得
a=4
b=-6
,
∴直線BM′的解析式為y=4x-6,
把y=0代入得4x-6=0,解得x=
3
2
,
∴C點(diǎn)坐標(biāo)為(
3
2
,0),
∴S△ABM′=S△BAC+S△M′AC
=
1
2
×(3+
3
2
)×6+
1
2
×(3+
3
2
)×2
=18.
故答案為18.
點(diǎn)評(píng):本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題:反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)滿足兩個(gè)函數(shù)的解析式.也考查了三角形面積公式以及待定系數(shù)法求函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣陽(yáng)區(qū)一模)如圖,已知∠DAF,點(diǎn)B、C分別在AF、AD上
(1)根據(jù)要求,用尺規(guī)作圖(保留作圖痕跡,不寫作法與證明):
①在AD的右側(cè)作∠DCP=∠DAF;
②在射線CP上取一點(diǎn)E,使CE=AB,連接BE.
(2)以點(diǎn)A、B、E、C為頂點(diǎn)的四邊形的形狀為
平行四邊形
平行四邊形
,請(qǐng)加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣陽(yáng)區(qū)一模)如圖,在四邊形ABCD中,∠ABC=90°,AB=CB,AD=CD,點(diǎn)M位對(duì)角線BD(不含點(diǎn)B)上任意一點(diǎn),△ABE是等邊三角形,將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.
(1)求證:△AMB≌△ENB;
(2)①直接回答:當(dāng)點(diǎn)M在何處時(shí),AM+CM的值最小?
②當(dāng)點(diǎn)M在何處時(shí),AM+BM+CM的值最?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣陽(yáng)區(qū)一模)下列四個(gè)數(shù)中,在-3和1之間的整數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣陽(yáng)區(qū)一模)不等式-2x-4≥0的解集在數(shù)軸上表示正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣陽(yáng)區(qū)一模)如圖,某水庫(kù)堤壩橫斷面迎水坡AB的坡比是3:4,迎水坡面AB的長(zhǎng)度是50m,則堤壩高BC為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案