如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.
(1)求證:△ABE≌△CBF;
(2)若∠ABE=50°,求∠EGC的大小.

【答案】分析:(1)證全等三角形由AB=BC,BE=BF,∠ABE+∠EBC=∠CBF+∠EBC?∠BAE=∠CBF,可證的全等.
(2)因為BE=BF再根據(1)可得∠EFB=∠BEF=45°,∠EGC=∠EBG+∠BEF=45°+40°=85°
解答:(1)證明:∵四邊形ABCD是正方形,BE⊥BF
∴AB=CB,∠ABC=∠EBF=90°(1分)
∴∠ABC-∠EBC=∠EBF-∠EBC
即∠ABE=∠CBF(2分)
又BE=BF(3分)
∴△ABE≌△CBF;(4分)

(2)解:∵BE=BF,∠EBF=90°
∴∠BEF=45°(5分)
又∠EBG=∠ABC-∠ABE=40°(6分)
∴∠EGC=∠EBG+∠BEF=85°.(8分)
(注:其它方法酌情給分)
點評:本題關鍵在于全等三角形的證明以及等腰三角形性質的運用,等腰三角形兩底角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案