若直線l:y=kx+b經(jīng)過不同的三點A(m,n),B(n,m),C(m-n,n-m),則該直線經(jīng)過( )象限。
A.二、四 B.一、三 C.二、三、四 D.一、三、四
科目:初中數(shù)學(xué) 來源:2007年成都市初中畢業(yè)、升學(xué)統(tǒng)一考試數(shù)學(xué)試卷 題型:044
在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,其頂點的橫坐標(biāo)為1,且過點(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達式;
(2)若直線l:y=kx(k≠0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出該直線的函數(shù)表達式及點D的坐標(biāo);若不存在,請說明理由;
(3)若點P是位于該二次函數(shù)對稱軸右邊圖象上不與頂點重合的任意一點,試比較銳角∠PCO與∠ACO的大小(不必證明),并寫出此時點P的橫坐標(biāo)xp的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009年廣東省茂名市高中階段學(xué)校招生考試數(shù)學(xué)試題 題型:047
已知:如圖,直徑為OA的⊙M與x軸交于點O、A,點B、C把分為三等份,連接MC并延長交y軸于點D(0,3).
(1)求證:△OMD≌△BAO;
(2)若直線l:y=kx+b把⊙M的面積分為二等份,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市前洲中學(xué)九年級下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
閱讀下列材料:
我們知道,一次函數(shù)y=kx+b的圖象是一條直線,而y=kx+b經(jīng)過恒等變形可化為直線的另一種表達形式:Ax+Bx+C=0(A、B、C是常數(shù),且A、B不同時為0).如圖1,點P(m,n)到直線l:Ax+Bx+C=0的距離(d)計算公式是:d= .
例:求點P(1,2)到直線y= x-的距離d時,先將y= x-化為5x-12y-2=0,再由上述距離公式求得d= = .
解答下列問題:
如圖2,已知直線y=-x-4與x軸交于點A,與y軸交于點B,拋物線y=x2-4x+5上的一點M(3,2).
(1)求點M到直線AB的距離.
(2)拋物線上是否存在點P,使得△PAB的面積最?若存在,求出點P的坐標(biāo)及△PAB面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下列材料:
我們知道,一次函數(shù)y=kx+b的圖象是一條直線,而y=kx+b經(jīng)過恒等變形可化為直線的另一種表達形式:Ax+Bx+C=0(A、B、C是常數(shù),且A、B不同時為0).如圖1,點P(m,n)到直線l:Ax+Bx+C=0的距離(d)計算公式是:d= .
例:求點P(1,2)到直線y= x-的距離d時,先將y= x-化為5x-12y-2=0,再由上述距離公式求得d= = .
解答下列問題:
如圖2,已知直線y=-x-4與x軸交于點A,與y軸交于點B,拋物線y=x2-4x+5上的一點M(3,2).
(1)求點M到直線AB的距離.
(2)拋物線上是否存在點P,使得△PAB的面積最?若存在,求出點P的坐標(biāo)及△PAB面積的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com